Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations
Abstract
:1. Introduction
- (a)
- such that , for , as ;
- (b)
- where ;
- (c)
- with for ;
- (d)
- with for .
2. Main Results
- (i)
- , and ;
- (ii)
- , and
2.1. The Case
- (e)
- for every .
2.2. The Case
- (f)
- for every .
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brands, J.J.M.S. Oscillation Theorems for second-order functional-differential equations. J. Math. Anal. Appl. 1978, 63, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Baculikova, B.; Dzurina, J. Oscillation Theorems for second-order neutral differential equations. Comput. Math. Appl. 2011, 61, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Baculikova, B.; Dzurina, J. Oscillation Theorems for second-order nonlinear neutral differential equations. Comput. Math. Appl. 2011, 62, 4472–4478. [Google Scholar] [CrossRef] [Green Version]
- Bohner, M.; Grace, S.R.; Jadlovska, I. Oscillation criteria for second-order neutral delay differential equations. Electron. J. Qual. Theory Differ. Equ. 2017, 1–12. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Dzurina, J.; Jadlovska, I. New oscillation criteria for second-order half-linear advanced differential equations. Appl. Math. Comput. 2019, 347, 404–416. [Google Scholar] [CrossRef]
- Chatzarakis, G.E.; Jadlovska, I. Improved oscillation results for second-order half-linear delay differential equations. Hacet. J. Math. Stat. 2019, 48, 170–179. [Google Scholar] [CrossRef]
- Džurina, J. Oscillation Theorems for second-order advanced neutral differential equations. Tatra Mt. Math. Publ. 2011, 48, 61–71. [Google Scholar] [CrossRef]
- Fisnarova, S.; Marik, R. Oscillation of neutral second-order half-linear differential equations without commutativity in delays. Math. Slovaca 2017, 67, 701–718. [Google Scholar] [CrossRef]
- Umar, M.; Sabir, Z.; Raja, M.A.Z.; Shoaib, M.; Gupta, M.; Sanchez, Y.G. A Stochastic Intelligent Computing with Neuro-Evolution Heuristics for Nonlinear SITR System of Novel COVID-19 Dynamics. Symmetry 2020, 12, 1628. [Google Scholar] [CrossRef]
- Guirao, J.L.G.; Sabir, Z.; Saeed, T. Design and numerical solutions of a novel third-order nonlinear Emden–Fowler delay differential model. Math. Probl. Eng. 2020, 2020, 7359242. [Google Scholar] [CrossRef]
- Touchent, K.A.; Hammouch, Z.; Mekkaoui, T. A modified invariant subspace method for solving partial differential equations with non-singular kernel fractional derivatives. Appl. Math. Nonlinear Sci. 2020, 5, 35–48. [Google Scholar] [CrossRef]
- Sabir, Z.; Raja, M.A.Z.; Guirao, J.L.G.; Shoaib, M. A Neuro-Swarming Intelligence-Based Computing for Second Order Singular Periodic Non-linear Boundary Value Problems. Front. Phys. 2020, 8, 224. [Google Scholar] [CrossRef]
- Grace, S.R.; Džurina, J.; Jadlovska, I.; Li, T. An improved approach for studying oscillation of second-order neutral delay differential equations. J. Inequ. Appl. 2018, 193, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karpuz, B.; Santra, S.S. Oscillation Theorems for second-order nonlinear delay differential equations of neutral type. Hacet. J. Math. Stat. 2019, 48, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhao, Y.; Han, Z. New oscillation criterion for Emden–Fowler type nonlinear neutral delay differential equations. J. Appl. Math. Comput. 2018, 60, 191–200. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Bohner, M.; Li, T.; Zhang, C. Oscillation of second-order differential equations with a sublinear neutral term. Carpathian J. Math. 2014, 30, 1–6. [Google Scholar]
- Baculikova, B.; Li, T.; Dzurina, J. Oscillation Theorems for second order neutral differential equations. Electron. J. Qual. Theory Differ. Equ. 2011, 74, 1–13. [Google Scholar] [CrossRef]
- Bazighifan, O.; Ruggieri, M.; Santra, S.S.; Scapellato, A. Qualitative Properties of Solutions of Second-Order Neutral Differential Equations. Symmetry 2020, 12, 1520. [Google Scholar] [CrossRef]
- Li, T.; Rogovchenko, Y.V. Oscillation Theorems for second-order nonlinear neutral delay differential eqquations. Abstr. Appl. Anal. 2014, 594190. [Google Scholar]
- Li, Q.; Wang, R.; Chen, F.; Li, T. Oscillation of second-order nonlinear delay differential equations with nonpositive neutral coefficients. Adv. Differ. Equ. 2015, 35, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Pinelas, S.; Santra, S.S. Necessary and sufficient condition for oscillation of nonlinear neutral first-order differential equations with several delays. J. Fixed Point Theory Appl. 2018, 20, 1–13. [Google Scholar] [CrossRef]
- Pinelas, S.; Santra, S.S. Necessary and sufficient conditions for oscillation of nonlinear first order forced differential equations with several delays of neutral type. Analysis 2019, 39, 97–105. [Google Scholar] [CrossRef]
- Qian, Y.; Xu, R. Some new osciilation criteria for higher order quasi-linear neutral delay differential equations. Differ. Equ. Appl. 2011, 3, 323–335. [Google Scholar]
- Santra, S.S. Existence of positive solution and new oscillation criteria for nonlinear first-order neutral delay differential equations. Differ. Equ. Appl. 2016, 8, 33–51. [Google Scholar] [CrossRef] [Green Version]
- Santra, S.S. Oscillation analysis for nonlinear neutral differential equations of second-order with several delays. Mathematica 2017, 59, 111–123. [Google Scholar]
- Santra, S.S. Oscillation analysis for nonlinear neutral differential equations of second-order with several delays and forcing term. Mathematica 2019, 61, 63–78. [Google Scholar] [CrossRef]
- Santra, S.S. Necessary and sufficient condition for oscillatory and asymptotic behavior of second-order functional differential equations. Krag. J. Math. 2020, 44, 459–473. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Scapellato, A. Nonlinear Robin problems with general potential and crossing reaction. Rend. Lincei-Mat. Appl. 2019, 30, 1–29. [Google Scholar] [CrossRef]
- Papageorgiou, N.S.; Scapellato, A. Constant sign and nodal solutions for parametric (p, 2)-equations. Adv. Nonlinear Anal. 2020, 9, 449–478. [Google Scholar] [CrossRef]
- Benia, Y.; Scapellato, A. Existence of solution to Korteweg-de Vries equation in a non-parabolic domain. Nonlinear Anal.-Theory Methods Appl. 2020, 195, 111758. [Google Scholar] [CrossRef]
- Benia, Y.; Ruggieri, M.; Scapellato, A. Exact Solutions for a Modified Schrödinger Equation. Mathematics 2019, 7, 908. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, M.; Speciale, M.P. Approximate Analysis of a Nonlinear Dissipative Model. Acta Appl. 2014, 132, 549–559. [Google Scholar] [CrossRef]
- Hale, J. Theory of Functional Differential Equations. In Applied Mathematical Sciences, 2nd ed.; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1977. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santra, S.S.; Nofal, T.A.; Alotaibi, H.; Bazighifan, O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms 2020, 9, 136. https://doi.org/10.3390/axioms9040136
Santra SS, Nofal TA, Alotaibi H, Bazighifan O. Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms. 2020; 9(4):136. https://doi.org/10.3390/axioms9040136
Chicago/Turabian StyleSantra, Shyam Sundar, Taher A. Nofal, Hammad Alotaibi, and Omar Bazighifan. 2020. "Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations" Axioms 9, no. 4: 136. https://doi.org/10.3390/axioms9040136
APA StyleSantra, S. S., Nofal, T. A., Alotaibi, H., & Bazighifan, O. (2020). Oscillation of Emden–Fowler-Type Neutral Delay Differential Equations. Axioms, 9(4), 136. https://doi.org/10.3390/axioms9040136