Prediction of the Roughness Reduction in Centrifugal Disc Finishing of Additive Manufactured Parts Based on Discrete Element Method
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machining Setup
2.2. Force Measurements
2.3. Finishing Experiments
2.4. Process Modeling
2.4.1. Simulation Setup
2.4.2. Contact Force and Timestep Calculation
2.4.3. Contact Parameter Determination
3. Results
3.1. Contact Parameters
3.2. Validation
3.3. Correlation of Finishing and Simulated Results
3.4. Prediction of Finishing Results
4. Discussion
5. Conclusions
- The high as-built roughness of additive manufactured workpieces was reduced from Ra0 = 17.9 µm to Ra = 2.1 µm (ΔRa = 88.3%) in a process time of tp = 120 min using centrifugal disc finishing.
- A simulation of the centrifugal disc finishing based on the DEM was devised. Simulated contact normal forces Fc,n deviated from the experimental results by 20% on average.
- The contacts intensity Ic obtained by DEM simulations correlated with the roughness reduction of the additive manufactured workpieces for different media types and rotational speeds nd.
- A limited accessibility to the surface led to local differences in the roughness reduction ΔRa, which depended on the media type.
- By empirically linking the simulated contacts intensity Ic with the roughness reduction ΔRa, the local differences in the roughness reduction ΔRa could be predicted qualitatively.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gillespie, L.K. Mass Finishing Handbook, 1st ed.; Industrial Press: La Vergne, TN, USA, 2006. [Google Scholar]
- Uhlmann, E.; Eulitz, A.; Seiffert, K.; Kersting, R.; Schenk, S. Finishing of additive manufactured titanium parts—Potentials of centrifugal disc finishing. Werkstattstech. Online 2019, 109, 402–406. [Google Scholar] [CrossRef]
- Kahlin, M.; Ansell, H.; Basu, D.; Kerwin, A.; Newton, L.; Smith, B.; Moverare, J.J. Improved fatigue strength of additively manufactured Ti6Al4V by surface post processing. Int. J. Fatigue 2020, 134, 105497. [Google Scholar] [CrossRef]
- Kahlin, M.; Ansell, H.; Kerwin, A.; Smith, B.; Moverare, J.J. Variable amplitude loading of additively manufactured Ti6Al4V subjected to surface post processes. Int. J. Fatigue 2021, 142, 105945. [Google Scholar] [CrossRef]
- Gerlitzky, G. Einfluss des Post-Processings auf Laserstrahlgeschmolzene Bauteile am Beispiel von ß-Titanlegierungen. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2021. [Google Scholar]
- Güneşsu, E.; Yılmaz, M.S.; Taşcıoğlu, E.; Sharif, S.; Kaynak, Y. Effect of Drag Finish Post-processing on Surface Integrity and Wear Behavior of Ti-6Al-4V Fabricated by Laser Powder Bed Fusion Additive Manufacturing. J. Mater. Eng. Perform. 2022, 117, 371. [Google Scholar] [CrossRef]
- Kaynak, Y.; Tascioglu, E. Post-processing effects on the surface characteristics of Inconel 718 alloy fabricated by selective laser melting additive manufacturing. Prog. Addit. Manuf. 2020, 5, 221–234. [Google Scholar] [CrossRef]
- Zanger, F.; Kacaras, A.; Neuenfeldt, P.; Schulze, V. Optimization of the stream finishing process for mechanical surface treatment by numerical and experimental process analysis. CIRP Annals 2019, 68, 373–376. [Google Scholar] [CrossRef]
- Malkorra, I.; Souli, H.; Salvatore, F. Numerical modelling of the drag finishing process at a macroscopic scale to optimize surface roughness improvement on additively manufactured (SLM) Inconel 718 parts. Procedia CIRP 2022, 108, 648–653. [Google Scholar] [CrossRef]
- Malkorra, I.; Souli, H.; Claudin, C.; Salvatore, F.; Arrazola, P.; Rech, J.; Seux, H.; Mathis, A.; Rolet, J. Identification of interaction mechanisms during drag finishing by means of an original macroscopic numerical model. Int. J. Mach. Tools Manuf. 2021, 168, 103779. [Google Scholar] [CrossRef]
- Eulitz, A. Einsatzverhalten Keramisch Gebundener Gleitschleifkörper. Ph.D. Thesis, Technische Universität Berlin, Berlin, Germany, 2021. [Google Scholar]
- Cundall, P.A.; Strack, O.D.L. A discrete numerical model for granular assemblies. Géotechnique 1979, 29, 47–65. [Google Scholar] [CrossRef]
- Uhlmann, E.; Eulitz, A.; Dethlefs, A. Discrete Element Modelling of Drag Finishing. Procedia CIRP 2015, 31, 369–374. [Google Scholar] [CrossRef] [Green Version]
- Naeini, S.E.; Spelt, J.K. Two-dimensional discrete element modeling of a spherical steel media in a vibrating bed. Powder Technol. 2009, 195, 83–90. [Google Scholar] [CrossRef]
- Naeini, S.E.; Spelt, J.K. Development of single-cell bulk circulation in granular media in a vibrating bed. Powder Technol. 2011, 211, 176–186. [Google Scholar] [CrossRef]
- Hashemnia, K.; Mohajerani, A.; Spelt, J.K. Development of a laser displacement probe to measure particle impact velocities in vibrationally fluidized granular flows. Powder Technol. 2013, 235, 940–952. [Google Scholar] [CrossRef]
- Hashemnia, K.; Spelt, J.K. Particle impact velocities in a vibrationally fluidized granular flow: Measurements and discrete element predictions. Chem. Eng. Sci. 2014, 109, 123–135. [Google Scholar] [CrossRef]
- Da Silva Maciel, L.; Spelt, J.K. Influence of process parameters on average particle speeds in a vibratory finisher. Granul. Matter 2018, 20, 65. [Google Scholar] [CrossRef]
- Da Silva Maciel, L.; Spelt, J.K. Comparison of DEM predictions and measured wall-media contact forces and work in a vibratory finisher. Powder Technol. 2020, 366, 434–447. [Google Scholar] [CrossRef]
- Da Silva Maciel, L.; Spelt, J.K. Measurements of wall-media contact forces and work in a vibratory finisher. Powder Technol. 2020, 360, 911–920. [Google Scholar] [CrossRef]
- Hashemnia, K.; Pourandi, S. Study the effect of vibration frequency and amplitude on the quality of fluidization of a vibrated granular flow using discrete element method. Powder Technol. 2018, 327, 335–345. [Google Scholar] [CrossRef]
- Kang, Y.S.; Hashimoto, F.; Johnson, S.P.; Rhodes, J.P. Discrete element modeling of 3D media motion in vibratory finishing process. CIRP Annals 2017, 66, 313–316. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Li, W.; Wang, Y. Vibratory finishing co-simulation based on ADAMS-EDEM with experimental validation. J. Adv. Manuf. Technol. 2018, 96, 1175–1185. [Google Scholar] [CrossRef]
- Makiuchi, Y.; Hashimoto, F.; Beaucamp, A. Model of material removal in vibratory finishing, based on Preston’s law and discrete element method. CIRP Annals 2019, 68, 365–368. [Google Scholar] [CrossRef]
- Salvatore, F.; Grange, F.; Kaminski, R.; Claudin, C.; Kermouche, G.; Rech, J.; Texier, A. Experimental and Numerical Study of Media Action During Tribofinishing in the Case of SLM Titanium Parts. Procedia CIRP 2017, 58, 451–456. [Google Scholar] [CrossRef]
- Uhlmann, E.; Kopp, M. Measurement and Modeling of Contact Forces during Robot-guided Drag Finishing. Procedia CIRP 2021, 102, 518–523. [Google Scholar] [CrossRef]
- Kopp, M.; Uhlmann, E. Potential of Robot-Guided Centrifugal Disc Finishing. In Production at the Leading Edge of Technology; Behrens, B.-A., Brosius, A., Drossel, W.-G., Hintze, W., Ihlenfeldt, S., Nyhuis, P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 283–291. [Google Scholar] [CrossRef]
- Uhlmann, E.; Kopp, M.; Fürstenau, J.-P. Modelling of media wear in centrifugal disc finishing. Werkstattstech. Online 2022, 112, 458–464. [Google Scholar] [CrossRef]
- Uhlmann, E.; Fürstenau, J.-P.; Kuche, Y.; Yabroudi, S.; Polte, J.; Polte, M. Modeling of the wet immersed tumbling process with the Discrete Element Method (DEM). Procedia CIRP 2021, 102, 1–6. [Google Scholar] [CrossRef]
- Cariapa, V.; Park, H.; Kim, J.; Cheng, C.; Evaristo, A. Development of a metal removal model using spherical ceramic media in a centrifugal disk mass finishing machine. Adv. Manuf. Technol. 2008, 39, 92–106. [Google Scholar] [CrossRef]
- Wan, S.; Sato, T.; Hartawan, A. Vibratory Finishing of Immobilized Cylinders. Adv. Mat. Res. 2012, 565, 278–283. [Google Scholar] [CrossRef]
- Wan, S. A Framework for the Analysis of Mass Finishing Processes. Adv. Mat. Res. 2012, 565, 284–289. [Google Scholar] [CrossRef]
- Ten, J.S.; Wan, S. Benchmarking study on continuum-based granular flow dynamics models for simulating the drag finishing process on a CFD framework. Int. J. Abras. Technol. 2014, 6, 214–225. [Google Scholar] [CrossRef]
- Mullany, B.; Shahinian, H.; Navare, J.; Azimi, F.; Fleischhauer, E.; Tkacik, P.; Keanini, R. The application of computational fluid dynamics to vibratory finishing processes. CIRP Annals 2017, 66, 309–312. [Google Scholar] [CrossRef]
- Kopp, M.; Uhlmann, E.; Kneider, C. Experimental investigations of the workpiece-media-interaction and the surface topography formation in centrifugal disc finishing. Procedia CIRP 2022, 115, 24–29. [Google Scholar] [CrossRef]
- DIN EN ISO 4287; Geometrische Produktspezifikation (GPS)—Oberflächenbeschaffenheit: Tastschnittverfahren—Benennungen, Definitionen und Kenngrößen der Oberflächenbeschaffenheit. Beuth: Berlin, Germany, 2010.
- DIN EN ISO 4288; Geometrische Produktspezifikationen (GPS)—Oberflächenbeschaffenheit: Tastschnittverfahren Regeln und Verfahren für die Beurteilung der Oberflächenbeschaffenheit. Beuth: Berlin, Germany, 1998.
- Malone, K.F.; Xu, B.H. Determination of contact parameters for discrete element method simulations of granular systems. Particuology 2008, 6, 521–528. [Google Scholar] [CrossRef]
- Schwager, T.; Pöschel, T. Coefficient of restitution and linear–dashpot model revisited. Granul. Matter 2007, 9, 465–469. [Google Scholar] [CrossRef]
- Tsuji, Y.; Kawaguchi, T.; Tanaka, T. Discrete particle simulation of two-dimensional fluidized bed. Powder Technol. 1993, 77, 79–87. [Google Scholar] [CrossRef]
- González-Montellano, C.; Fuentes, J.M.; Ayuga-Téllez, E.; Ayuga, F. Determination of the mechanical properties of maize grains and olives required for use in DEM simulations. J. Food Eng. 2012, 111, 553–562. [Google Scholar] [CrossRef]
- Lommen, S.; Schott, D.; Lodewijks, G. DEM speedup: Stiffness effects on behavior of bulk material. Particuology 2014, 12, 107–112. [Google Scholar] [CrossRef]
- Hashimoto, F.; Johnson, S.P.; Chaudhari, R.G. Modeling of material removal mechanism in vibratory finishing process. CIRP Annals 2016, 65, 325–328. [Google Scholar] [CrossRef]
Component of Simulation | Material | Density ρ | Young’s Modulus E | Poisson Ratio ν |
---|---|---|---|---|
- | - | g cm−3 | GPa | - |
media | ceramic | 2.52 * | 77 ** | 0.19 ** |
workpiece | steel | force sensor: 3.61 workpiece variant A/B: 5.93 | 210 | 0.3 |
finishing machine | polyurethane | 1.25 | 0.1 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopp, M.; Uhlmann, E. Prediction of the Roughness Reduction in Centrifugal Disc Finishing of Additive Manufactured Parts Based on Discrete Element Method. Machines 2022, 10, 1151. https://doi.org/10.3390/machines10121151
Kopp M, Uhlmann E. Prediction of the Roughness Reduction in Centrifugal Disc Finishing of Additive Manufactured Parts Based on Discrete Element Method. Machines. 2022; 10(12):1151. https://doi.org/10.3390/machines10121151
Chicago/Turabian StyleKopp, Marco, and Eckart Uhlmann. 2022. "Prediction of the Roughness Reduction in Centrifugal Disc Finishing of Additive Manufactured Parts Based on Discrete Element Method" Machines 10, no. 12: 1151. https://doi.org/10.3390/machines10121151
APA StyleKopp, M., & Uhlmann, E. (2022). Prediction of the Roughness Reduction in Centrifugal Disc Finishing of Additive Manufactured Parts Based on Discrete Element Method. Machines, 10(12), 1151. https://doi.org/10.3390/machines10121151