Stress-Dependent Magnetic Equivalent Circuit for Modeling Welding Effects in Electrical Steel Laminations
Abstract
:1. Introduction
2. Proposed Model
2.1. MEC Model
2.2. Coarse-Scale Stress Dependent Loss Coefficients
3. Local Classical Loss in Weld Seam
3.1. Methodology
3.1.1. Model Construction
3.1.2. Magnetic Measurements
3.1.3. Model Parameter Fitting
4. Case Study: Welded Stator Core Measurements
5. Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bourchas, K.; Stening, A.; Soulard, J.; Broddefalk, A.; Lindenmo, M.; Dahlén, M.; Gyllensten, F. Quantifying Effects of Cutting and Welding on Magnetic Properties of Electrical Steels. IEEE Trans. Ind. Appl. 2017, 53, 4269–4278. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wang, H.; Chen, K.; Li, S. Comparison of laser and TIG welding of laminated electrical steels. J. Mater. Process. Technol. 2017, 247, 55–63. [Google Scholar] [CrossRef]
- Schade, T.; Ramsayer, R.M.; Bergmann, J.P. Laser welding of electrical steel stacks investigation of the weldability. In Proceedings of the 2014 4th International, Proceedings of the Electric Drives Production Conference (EDPC), Nuremberg, Germany, 30 September–1 October 2014. [Google Scholar]
- Vourna, P.; Ktena, A.; Tsakiridis, P.E.; Hristoforou, E. A novel approach of accurately evaluating residual stress and microstructure of welded electrical steels. NDT E Int. 2015, 71, 33–42. [Google Scholar] [CrossRef]
- Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel. J. Magn. Magn. Mater. 2016, 417, 42–48. [Google Scholar] [CrossRef]
- Krings, A.; Nategh, S.; Wallmark, O.; Soulard, J. Influence of the Welding Process on the Performance of Slotless PM Motors with SiFe and NiFe Stator Laminations. IEEE Trans. Ind. Appl. 2013, 50, 296–306. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y. Modeling of Eddy-Current Losses of Welded Laminated Electrical Steels. IEEE Trans. Ind. Electron. 2016, 64, 2992–3000. [Google Scholar] [CrossRef]
- Bertotti, G. General properties of power losses in soft ferromagnetic materials. IEEE Trans. Magn. 1988, 24, 621–630. [Google Scholar] [CrossRef]
- Permiakov, V. 1D and 2D Magnetization in Electrical Steels under Uniaxial Stress. Doctoral dissertation, Ghent University, 2005. Available online: https://users.ugent.be/~ldupre/PhD_viatcheslav_permiakov.pdf (accessed on 6 November 2022).
- Pulnikov, A. Modification of magnetic properties of non oriented electrical steels by the production of electromagnetic devices. Doctoral dissertation, Ghent University, 2004. Available online: https://biblio.ugent.be/publication/8597986 (accessed on 6 November 2022).
- Aydin, U.; Rasilo, P.; Martin, F.; Belahcen, A.; Daniel, L.; Haavisto, A.; Arkkio, A. Effect of multi-axial stress on iron losses of electrical steel sheets. J. Magn. Magn. Mater. 2018, 469, 19–27. [Google Scholar] [CrossRef]
- Daniel, L.; Hubert, O. Equivalent Stress Criteria for the Effect of Stress on Magnetic Behavior. IEEE Trans. Magn. 2010, 46, 3089–3092. [Google Scholar] [CrossRef]
- LoBue, M.; Sasso, C.; Basso, V.; Fiorillo, F.; Bertotti, G. Power losses and magnetization process in Fe–Si non-oriented steels under tensile and compressive stress. J. Magn. Magn. Mater. 2000, 215-216, 124–126. [Google Scholar] [CrossRef]
- Permiakov, V.; Dupré, L.; Pulnikov, A.; Melkebeek, J. Loss separation and parameters for hysteresis modelling under compressive and tensile stresses. J. Magn. Magn. Mater. 2004, 272, E553–E554. [Google Scholar] [CrossRef]
- Karthaus, J.; Steentjes, S.; Leuning, N.; Hameyer, K. Effect of mechanical stress on different iron loss components up to high frequencies and magnetic flux densities. COMPEL-Int. J. Comput. Math. Electr. Electron. Eng. 2017, 36, 580–592. [Google Scholar] [CrossRef]
- Pulnikov, A.; Decocker, R.; Permiakov, V.; Dupré, L.; Vandevelde, L.; Petrov, R.; Melkebeek, J.; Houbaert, Y.; Gyselinck, J.; Wisselink, H. The relation between the magnetostriction and the hysteresis losses in the non-oriented electrical steels. J. Magn. Magn. Mater. 2005, 290, 1454–1456. [Google Scholar] [CrossRef]
- Abdallh, A.A.-E.; Sergeant, P.; Crevecoeur, G.; Vandenbossche, L.; Dupré, L.; Sablik, M. Magnetic material identification in geometries with non-uniform electromagnetic fields using global and local magnetic measurements. IEEE Trans. Magn. 2009, 45, 4157–4160. [Google Scholar] [CrossRef]
- Schoppa, A.; Schneider, J.; Wuppermann, C.-D.; Bakon, T. Influence of welding and sticking of laminations on the magnetic properties of non-oriented electrical steels. J. Magn. Magn. Mater. 2003, 254–255, 367–369. [Google Scholar] [CrossRef]
Symbol | Description | Unit |
---|---|---|
Rweld | Radius of the welding seam | mm |
Rdeg | Radius of the degraded zone | mm |
σ1 | Stress in stress-free zone (always assumed 0 MPa) | MPa |
σ2 | Residual stress in degraded zone | MPa |
σ3 | Residual stress in welded zone | MPa |
σeq | Equivalent stress calculated in each reluctance by Equation (1) | MPa |
Ch | Core loss coefficient for hysteresis loss | |
Ccl | Core loss coefficient for classical loss | |
Cex | Core loss coefficient for excess loss | |
Kµ | Stress-dependent correction factor for magnetic permeability | |
Kh | Stress-dependent correction factor for hysteresis loss component | |
Kex | Stress-dependent correction factor for excess loss component | |
wtot | Average yoke width | mm |
ltot | Average yoke circumference | mm |
d | Lamination thickness | mm |
Bp | Peak flux density | T |
µr | Relative permeability | |
lr | Length of reluctance | mm |
Ar | Cross section of reluctance | mm2 |
f | Excitation frequency | Hz |
ρ | Electrical resistivity | Ωm |
1 | The weld seam area and its surrounding heat affected area are simplified as a rectangular area with dimensions specified in Figure 2. |
2 | The curvature on the outer edge of the ring core is simplified to a straight line. |
3 | A uniform isotropic stress state is assumed in each reluctance of the considered MEC, but stress anisotropy with respect to magnetization direction is considered. |
4 | The skin effect is neglected which is a valid assumption when considering sufficiently low frequencies. |
5 | The applied welding technique does not change the metallurgic composition of the weld seam. The electrical steel melts and bonds with adjacent laminations without any additional binding material during the welding process. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daem, A.; Ibrahim, M.N.; Sergeant, P.; Dupré, L. Stress-Dependent Magnetic Equivalent Circuit for Modeling Welding Effects in Electrical Steel Laminations. Machines 2022, 10, 1153. https://doi.org/10.3390/machines10121153
Daem A, Ibrahim MN, Sergeant P, Dupré L. Stress-Dependent Magnetic Equivalent Circuit for Modeling Welding Effects in Electrical Steel Laminations. Machines. 2022; 10(12):1153. https://doi.org/10.3390/machines10121153
Chicago/Turabian StyleDaem, Andries, Mohamed N. Ibrahim, Peter Sergeant, and Luc Dupré. 2022. "Stress-Dependent Magnetic Equivalent Circuit for Modeling Welding Effects in Electrical Steel Laminations" Machines 10, no. 12: 1153. https://doi.org/10.3390/machines10121153
APA StyleDaem, A., Ibrahim, M. N., Sergeant, P., & Dupré, L. (2022). Stress-Dependent Magnetic Equivalent Circuit for Modeling Welding Effects in Electrical Steel Laminations. Machines, 10(12), 1153. https://doi.org/10.3390/machines10121153