Research on Generating Gear Grinding Machining Error Based on Mapping Relationship between Grinding Wheel Surface and Tooth Flank
Abstract
:1. Introduction
2. Principle of Generating Gear Grinding
2.1. Mathematical Model of Gear Grinding
2.2. Tooth Flank Normal Deviation
2.3. Tooth Flank Twist
3. Experimental Setup
4. Results and Discussion
4.1. Machining Error a Test Generating Gear Grinding
4.2. Effect of Grinding Wheel Wear on Tooth Flank Deviation
4.3. Effect of Tooth Flank Twist Compensation
5. Conclusions
- (1)
- Compared with the theoretical tooth flank, the deviation difference from the gear top to the bottom is positive, and it decreases gradually, indicating that the cutting state tends to be stable as the grinding wheel cuts in. The deviation difference also decreases from the tooth tip to the root, but it is negative at the tooth root, suggesting that the cutting volume at the tooth root is insufficient.
- (2)
- With the increase in the grinding wheel grinding times, the maximum and RMS values of the tooth flank deviation increase by nearly 3% and 4%, respectively.
- (3)
- The two indexes of the tooth flank twist show that the compensation effect of the EGB compensation method is better than that of the traditional compensation method.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Klocke, F. Gear Cutting; Springer: Berlin/Heidelberg, Germany, 2019; ISBN 978-3-662-53119-8. [Google Scholar]
- Miler, D.; Hoić, M. Optimisation of cylindrical gear pairs: A review. Mech. Mach. Theory 2021, 156, 104156. [Google Scholar] [CrossRef]
- Karpuschewski, B.; Knoche, H.J.; Hipke, M. Gear finishing by abrasive processes. CIRP Ann. 2008, 57, 621–640. [Google Scholar] [CrossRef]
- Yoshino, H.; Ikeno, K. Error Compensation for Form Grinding of Gears. Trans. JSME Ser. C 1991, 57, 3652–3655. [Google Scholar] [CrossRef] [Green Version]
- Xia, C.; Wang, S.; Wang, S.; Ma, C.; Xu, K. Geometric error identification and compensation for rotary worktable of gear profile grinding machines based on single-axis motion measurement and actual inverse kinematic model. Mech. Mach. Theory 2021, 155, 104042. [Google Scholar] [CrossRef]
- Zhou, B.; Wang, S.; Fang, C.; Sun, S.; Dai, H. Geometric error modeling and compensation for five-axis CNC gear profile grinding machine tools. Int. J. Adv. Manuf. Technol. 2017, 92, 2639–2652. [Google Scholar] [CrossRef]
- Litvin, F.L.; Fuentes, A.; Hayasaka, K. Design, manufacture, stress analysis, and experimental tests of low-noise high endurance spiral bevel gears. Mech. Mach. Theory 2006, 41, 83–118. [Google Scholar] [CrossRef]
- Shih, Y.P.; Chen, S.D. A flank correction methodology for a five-axis CNC gear profile grinding machine. Mech. Mach. Theory 2012, 47, 31–45. [Google Scholar] [CrossRef]
- Shih, Y.P.; Chen, S.D. Free-Form Flank Correction in Helical Gear Grinding Using a Five-Axis Computer Numerical Control Gear Profile Grinding Machine. ASME J. Manuf. Sci. Eng. 2012, 134, 041006. [Google Scholar] [CrossRef]
- Shih, Y.P.; Zhang, C.X. Manufacture of Spiral Bevel Gears Using Standard Profile Angle Blade Cutters on a Five-Axis Computer Numerical Control Machine. ASME J. Manuf. Sci. Eng. 2017, 139, 061017. [Google Scholar] [CrossRef]
- Wang, N.; Li, X.; Wang, K.; Zeng, Q. A Novel Axial Modification and Simulation Analysis of Involute Spur Gear. Chin. J. Mech. Eng. 2017, 63, 12. [Google Scholar] [CrossRef]
- Fong, Z.H.; Chen, G.-H. Gear Flank Modification Using a Variable Lead Grinding Worm Method on a Computer Numerical Control Gear Grinding Machine. J. Mech. Des. 2016, 138, 083302. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, H.; Li, T.; Gao, Z.; Nie, S.; Wei, B. A profile dressing method for grinding worm used for helical gear with higher order modification profile. Int. J. Adv. Manuf. Technol. 2018, 99, 161–168. [Google Scholar] [CrossRef]
- Guo, E.; Hong, R.; Huang, X.; Fang, C. A correction method for power skiving of cylindrical gears lead modification. J. Mech. Sci. Technol. 2015, 29, 4379–4386. [Google Scholar] [CrossRef]
- Tran, V.Q.; Wu, Y.R. Dual lead-crowning for helical gears with anti-twist tooth flanks on the internal gear honing machine. IOP Conf. Ser. Mater. Sci. Eng. 2017, 282, 12005. [Google Scholar] [CrossRef]
- Tran, V.T.; Hsu, R.H.; Tsay, C.B. Study on the Anti-Twist Helical Gear Tooth Flank with Longitudinal Tooth Crowning. J. Mech. Des. 2014, 136, 061007. [Google Scholar] [CrossRef]
- Zhang, H.; Fang, C.; Huang, X. Accurate Tooth Lead Crowning without Twist in Cylindrical Helical Gear Grinding. Adv. Mech. Eng. 2014, 6, 496181. [Google Scholar] [CrossRef]
- Kang, B.; Ma, H.; Li, J.; Xu, B. Effect of grinding parameters on surface quality, microstructure and rolling contact fatigue behaviors of gear steel for vacuum pump. Vacuum 2020, 180, 109637. [Google Scholar] [CrossRef]
- Ming, X.; Gao, Q.; Yan, H.; Liu, J.; Liao, C. Mathematical modeling and machining parameter optimization for the surface roughness of face gear grinding. Int. J. Adv. Manuf. Technol. 2017, 90, 2453–2460. [Google Scholar] [CrossRef]
- Guerrini, G.; Lutey, A.H.A.; Melkote, S.N.; Ascari, A.; Fortunato, A. Dry Generating Gear Grinding: Hierarchical Two-Step Finite Element Model for Process Optimization. J. Manuf. Sci. Eng. Trans. ASME 2019, 141, 1–24. [Google Scholar] [CrossRef]
- Tian, X.Q.; Han, J.; Xia, L. Precision control and compensation of helical gear hobbing via electronic gearbox Cross-Coupling controller. Int. J. Precis. Eng. Manuf. 2015, 16, 797–805. [Google Scholar] [CrossRef]
- Sohn, J.; Park, N. Modified worm gear hobbing for symmetric longitudinal crowning in high lead cylindrical worm gear drives. Mech. Mach. Theory 2017, 117, 133–147. [Google Scholar] [CrossRef]
- Tamura, H.; Liu, Z.X.; Kawasaki, K. Measurement of Helical Gear Using Coordinate Measuring Machine. Trans. JSME Ser. C 1997, 63, 572–578. [Google Scholar] [CrossRef] [Green Version]
- Klingelnberg, J. Bevel Gear; Springer: Berlin, Germany, 2016; ISBN 978-3-662-43892-3. [Google Scholar]
- Fan, Q.; DaFoe, R.S.; Swanger, J.W. Higher-Order Tooth Flank Form Error Correction for Face-Milled Spiral Bevel and Hypoid Gears. J. Mech. Des. 2008, 130, 072601. [Google Scholar] [CrossRef]
- Tian, X.Q.; Zhou, L.; Han, J.; Xia, L. Research on Gear Flank Twist Compensation of Continuous Generating Grinding Gear Based on Flexible Electronic Gearbox. IEEE Access 2021, 9, 151080–151088. [Google Scholar] [CrossRef]
Diamond Wheel | Grinding Wheel | Workpiece Gear | |||
---|---|---|---|---|---|
Normal module () | 4 mm | Thread number () | 3 | Number of teeth () | 35 |
Normal pressure angle () | 20° | Lead angle () | 2.559° | Normal module () | 4 mm |
Outside diameter () | 123.50 mm | Normal pressure angle () | 20° | Normal pressure angle () | 20° |
Effective diameter () | 93 mm | Outside diameter () | 279 mm | Helix angle () | 30° |
Rotation Speed of Grinding Wheel () | Radial Cutting Depth () | Axial Feed Rate () |
---|---|---|
2800 | 0.05 | 60 |
Profile Direction | Lead Direction | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Right tooth flank normal deviation (unit: ) | |||||||||
A | −18.53 | −11.92 | −6.14 | −2.26 | −0.42 | −0.11 | −1.69 | −4.63 | −9.78 |
B | −14.56 | −8.07 | −3.95 | −1.03 | 0.00 | −0.66 | −3.21 | −7.64 | −13.08 |
C | −10.28 | −4.98 | −1.90 | −0.16 | −0.33 | −3.03 | −5.76 | −11.39 | −18.91 |
D | −6.11 | −2.24 | −0.42 | −0.11 | −1.70 | −5.20 | −9.81 | −16.87 | −25.83 |
E | −2.24 | −0.27 | −0.21 | −1.71 | −5.21 | −10.61 | −16.89 | −25.85 | −36.72 |
Left tooth flank normal deviation (unit: ) | |||||||||
E | −37.64 | −26.63 | −17.52 | −11.11 | −5.56 | −1.91 | −0.28 | −0.20 | −2.01 |
D | −26.61 | −17.50 | −10.29 | −5.55 | −2.91 | −0.16 | −0.32 | −2.02 | −5.74 |
C | −19.58 | −11.90 | −6.13 | −2.25 | −0.42 | −0.11 | −1.69 | −4.64 | −9.79 |
B | −13.63 | −8.06 | −3.48 | −0.79 | 0.00 | −0.88 | −3.66 | −7.65 | −13.99 |
A | −10.26 | −4.97 | −1.89 | −0.16 | −0.33 | −2.03 | −5.77 | −11.40 | −17.88 |
Profile Direction | Lead Direction | ||||||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | |
Right tooth flank normal deviation (unit: ) | |||||||||
A | −33.34 | −28.52 | −24.08 | −16.89 | −9.52 | −8.17 | −9.42 | −10.64 | −13.36 |
B | −27.87 | −23.32 | −18.35 | −13.05 | −7.45 | −8.25 | −9.95 | −11.07 | −14.66 |
C | −22.26 | −17.63 | −12.73 | −7.26 | −5.41 | −6.31 | −10.34 | −11.27 | −17.78 |
D | −14.46 | −10.89 | −8.88 | −5.97 | −1.83 | −9.53 | −14.27 | −21.41 | −27.02 |
E | −7.31 | −6.52 | −5.81 | −4.51 | −3.72 | −12.37 | −17.58 | −26.03 | −36.51 |
Left tooth flank surface normal deviation (unit: ) | |||||||||
E | −45.18 | −32.16 | −21.08 | −18.17 | −1.45 | −0.82 | −2.43 | −5.31 | −6.11 |
D | −37.12 | −28.05 | −19.91 | −16.58 | −0.31 | −3.25 | −4.50 | −6.12 | −8.88 |
C | −31.26 | −25.65 | −15.63 | −12.56 | −7.74 | −5.92 | −6.89 | −7.78 | −13.13 |
B | −28.07 | −21.46 | −14.37 | −13.22 | −10.11 | −9.36 | −11.65 | −13.82 | −15.62 |
A | −26.68 | −19.37 | −13.89 | −12.96 | −12.36 | −11.03 | −12.17 | −15.35 | −19.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, H.; Han, J.; Tian, X.; Lu, Y.; Li, G.; Xia, L. Research on Generating Gear Grinding Machining Error Based on Mapping Relationship between Grinding Wheel Surface and Tooth Flank. Machines 2022, 10, 1202. https://doi.org/10.3390/machines10121202
Jiang H, Han J, Tian X, Lu Y, Li G, Xia L. Research on Generating Gear Grinding Machining Error Based on Mapping Relationship between Grinding Wheel Surface and Tooth Flank. Machines. 2022; 10(12):1202. https://doi.org/10.3390/machines10121202
Chicago/Turabian StyleJiang, Hong, Jiang Han, Xiaoqing Tian, Yiguo Lu, Guanghui Li, and Lian Xia. 2022. "Research on Generating Gear Grinding Machining Error Based on Mapping Relationship between Grinding Wheel Surface and Tooth Flank" Machines 10, no. 12: 1202. https://doi.org/10.3390/machines10121202
APA StyleJiang, H., Han, J., Tian, X., Lu, Y., Li, G., & Xia, L. (2022). Research on Generating Gear Grinding Machining Error Based on Mapping Relationship between Grinding Wheel Surface and Tooth Flank. Machines, 10(12), 1202. https://doi.org/10.3390/machines10121202