Numerical Investigation of Influence of Fluid Rate, Fluid Viscosity, Perforation Angle and NF on HF Re-Orientation in Heterogeneous Rocks Using UDEC T-W Method
Abstract
:1. Introduction
2. UDEC T-W Modeling Method and Validation
2.1. UDEC T-W Modeling Method
2.2. Model Validation Case 1: Abass’ Laboratory Experiments
2.2.1. Model Establishment and Micro-Property Calibration
2.2.2. Validation Results
2.3. Model Validation Case 2: Zangeneh’s Numerical Simulations
2.3.1. Effects of Natural Fracture on Hydraulic Fracturing
2.3.2. Model Establishment and Validation Results
3. Analysis of Influencing Factors of HF Re-Orientation in Heterogeneous Rocks
3.1. Modelling Schemes
3.2. Effect of Fluid Rate
3.3. Effect of Fluid Viscosity
3.4. Effect of Perforation Angle
3.5. Effect of Natural Fracture
4. Discussion
5. Conclusions
- (1)
- Variations in rock heterogeneity greatly affect the distributions of contact micro-properties (Figure 2), and thus influence the macroscopic and microscopic mechanical responses of the models (Figure 3). Generally, a slight disturbance will cause the failed contact elements in the model with low homogeneity degrees, which will result in generating randomly distributed failure contact elements that are the preferred pathways of HF propagation. This reveals the reason why HFs in heterogeneous rocks always propagate randomly and distribute asymmetrically when using the T-W method.
- (2)
- The Weibull distribution measures the homogeneity degree of rocks by means of the homogeneity index m, and the proper selection of homogeneity index is the premise of researches. The simulation results with the homogeneity index of 3 are closer to the experimental results than those with the homogeneity index of 2 when taking advantage of the experiments of Abass et al. [20,23] to validate the T-W modeling method. Moreover, by reproducing the numerical simulation of Zangeneh et al. [12], the T-W modeling method is also applicable to simulate the influence of rock heterogeneity on hydraulic fracture re-orientation in naturally fractured reservoirs.
- (3)
- The rock heterogeneity affects the effects of fluid rate, fluid viscosity and perforation angle on HF re-orientation from artificial weaknesses. The HF re-orientation distance increases obviously and the guidance of perforation on HF propagation is enhanced with the increase of fluid rate, fluid viscosity and perforation angle in heterogeneous rocks. In contrast, the differential stress is the dominant influencing factor in relatively homogeneous rocks, causing HFs to rapidly re-orientate from the artificial weakness towards the theoretical prediction. However, increasing the fluid viscosity and fluid rate can weaken the impact of differential stress.
- (4)
- Natural fractures are another factor influencing the HF re-orientation trajectory. In heterogeneous rocks, NFs opened by HFs will induce secondary HF re-orientation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clark, J. A hydraulic process for increasing the productivity of wells. J. Pet. Technol. 1949, 1, 1–8. [Google Scholar] [CrossRef]
- He, Q.Y.; Suorineni, F.T.; Oh, J. Modeling interaction between natural fractures and hydraulic fractures in block cave mining. In Proceedings of the 49th US rock Mechanics/Geomechanics Symposium, San Francisco, CA, USA, 29 June 2015. [Google Scholar]
- Dunlop, E.C.; Salmachi, A.; McCabe, P.J. Investigation of increasing hydraulic fracture conductivity within producing ultra-deep coal seams using time-lapse rate transient analysis: A long-term pilot experiment in the Cooper Basin, Australia. Int. J. Coal Geol. 2020, 220, 103363. [Google Scholar] [CrossRef]
- Cipolla, C.L.; Warpinski, N.R.; Mayerhofer, M.J. Hydraulic Fracture Complexity: Diagnosis, Remediation and Exploitation. In Proceedings of the SPE Asia Pacific Oil and Gas Conference and Exhibition, Perth, Australia, 20–22 October 2008. [Google Scholar]
- He, Q.Y.; Zhu, L.; Li, Y.C.; Li, D.Q.; Zhang, B.Y. Simulating Hydraulic Fracture Re-orientation in Heterogeneous Rocks with an Improved Discrete Element Method. Rock Mech. Rock Eng. 2021, 54, 2859–2879. [Google Scholar] [CrossRef]
- Lin, J.; Xu, C.; Yang, J. Study on the influence of pump flow rate on the deflection of hydraulic fracturing cracks in longitudinal flume cutting. J. Chin. Coal Soc. 2020, 45, 2804–2812. [Google Scholar]
- He, Q.Y.; Suorineni, F.T.; Oh, J. Review of hydraulic fracturing for preconditioning in cave mining. Rock Mech. Rock Eng. 2016, 49, 4893–4910. [Google Scholar] [CrossRef]
- He, Q.Y.; Suorineni, F.T.; Oh, J. Strategies for creating prescribed hydraulic fractures in cave mining. Rock Mech. Rock Eng. 2017, 50, 967–993. [Google Scholar] [CrossRef]
- Hubbert, M.K.; Willis, D.G. Mechanics of hydraulic fracturing. Trans. AIME 1957, 210, 153–168. [Google Scholar] [CrossRef]
- Daneshy, A.A. Hydraulic fracture propagation in the presence of planes of weakness. In Proceedings of the SPE-European Spring Meeting 1974 of the Society of Petroleum Engineers of AIME, Amsterdam, The Netherlands, 29–30 May 1974. [Google Scholar]
- Behnia, M.; Goshtasbi, K.; Marji, M.F.; Golshani, A. Numerical simulation of interaction between hydraulic and natural fractures in discontinuous media. Acta Geotech. 2015, 10, 533–546. [Google Scholar] [CrossRef]
- Zangeneh, N.; Eberhardt, E.; Bustin, R.M. Investigation of the influence of natural fractures and in situ stress on hydraulic fracture propagation using a distinct-element approach. Can. Geotech. J. 2015, 52, 926–946. [Google Scholar] [CrossRef] [Green Version]
- Huang, L.K.; Liu, J.J.; Zhang, F.S.; Dontsov, E.; Damjanac, B. Exploring the influence of rock inherent heterogeneity and grain size on hydraulic fracturing using discrete element modeling. Int. J. Solids Struct. 2019, 176, 207–220. [Google Scholar] [CrossRef]
- He, F.F.; Zhang, R.X.; Kang, T.H.; Kang, J.T.; Guo, J.Q. Dynamic propagation model for oriented perforation steering fracturing cracks in low permeability reservoirs based on microelement method. Chin. J. Rock Mech. Eng. 2020, 39, 782–792. [Google Scholar]
- Huang, B.X.; Yu, B.; Feng, F.; Li, Z.; Wang, Y.Z.; Liu, J.R. Field investigation into directional hydraulic fracturing for hard roof in Tashan Coal Mine. J. Coal Sci. Eng. 2013, 19, 153–159. [Google Scholar] [CrossRef]
- Behrmann, L.A.; Elbel, J.L. Effect of Perforations on Fracture Initiation. J. Pet. Technol. 1991, 43, 608–615. [Google Scholar] [CrossRef]
- Jefrey, R.G.; Chen, Z.R.; Zhang, X.; Bunger, A.P.; Mills, K.W. Measurement and analysis of full-scale hydraulic fracture initiation and reorientation. Rock Mech Rock Eng. 2015, 48, 2497–2512. [Google Scholar] [CrossRef]
- Vahab, M.; Akhondzadeh, S.; Khoei, A.R.; Khalil, A. An X-FEM investigation of hydro-fracture evolution in naturally-layered domains. Eng. Fract. Mech. 2018, 191, 187–204. [Google Scholar] [CrossRef]
- Lekontsev, Y.M.; Sazhin, P.V. Directional hydraulic fracturing in difficult caving roof control and coal degassing. J. Min. Sci. 2014, 50, 914–917. [Google Scholar] [CrossRef]
- Abass, H.H.; Meadows, D.L.; Brumley, J.L.; Hedayati, S.; Venditto, J.J. Oriented perforations-a rock mechanics view. In Proceedings of the SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, 24 September 1994. [Google Scholar]
- Jefrey, R.; Mills, K. Hydraulic fracturing applied to inducing longwall coal mine goaf falls. In Proceedings of the 4th North American Rock Mechanics Symposium, Seattle, WA, USA, 31 July–3 August 2000. [Google Scholar]
- Elbel, J.L.; Mack, M.G. Re-fracturing: Observations and theories. In Proceedings of the SPE Production Operations Symposium, Oklahoma City, OK, USA, 21–23 May 1993. [Google Scholar]
- Abass, H.H.; Hedayati, S.; Meadows, D. Nonplanar fracture propagation from a horizontal wellbore: Experimental study. SPE Prod. Facil. 1996, 11, 133–137. [Google Scholar] [CrossRef]
- Sesetty, V.; Ghassemi, A. A numerical study of sequential and simultaneous hydraulic fracturing in single and multi-lateral horizontal wells. J. Pet. Sci. Eng. 2015, 132, 65–76. [Google Scholar] [CrossRef]
- He, Q.Y.; Suorineni, F.T.; Ma, T.; Oh, J. Parametric study and dimensional analysis on prescribed hydraulic fractures in cave mining. Tunn. Undergr. Space Technol. 2018, 78, 47–63. [Google Scholar] [CrossRef]
- Weibull, W. A statistical distribution function of wide applicability. J. Appl. Mech. 1951, 18, 293–297. [Google Scholar] [CrossRef]
- Gao, F.Q.; Stead, D. The application of a modified Voronoi logic to brittle fracture modelling at the laboratory and field scale. Int. J. Rock Mech. Min. Sci. 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Chen, W.; Konietzky, H.; Liu, C.; Tan, X. Hydraulic fracturing simulation for heterogeneous granite by discrete element method. Comput Geotech. 2018, 95, 1–15. [Google Scholar] [CrossRef]
- Chen, S.; Yue, Z.Q.; Tham, L.G. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. Int. J. Rock Mech. Min. Sci. 2004, 41, 939–957. [Google Scholar] [CrossRef]
- Fenton, G.A.; Griffifiths, D.V. Risk Assessment in Geotechnical Engineering; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Yang, T.H.; Tham, L.G.; Tang, C.A.; Liang, Z.Z.; Tsui, Y. Infuence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks. Rock Mech. Rock Eng. 2004, 37, 251–275. [Google Scholar] [CrossRef]
- He, Q.Y.; Suorineni, F.T.; Ma, T.; Oh, J. Effect of Discontinuity Stress Shadows on Hydraulic Fracture Re-orientation. Int. J. Rock Mech. Min. Sci. 2017, 91, 179–194. [Google Scholar] [CrossRef]
- Kazerani, T.; Zhao, J. Micromechanical parameters in bonded particle method for modelling of brittle material failure. Int. J. Numer. Anal. Meth. Geomech. 2010, 34, 1877–1895. [Google Scholar] [CrossRef]
- Zhang, S.; Xu, J.H.; Chen, L.; Shimada, H.; Zhang, M.W.; He, H.H. The Effects of Precrack Angle on the Strength and Failure Characteristics of Sandstone under Uniaxial Compression. Geofluids 2021, 2021, 7153015. [Google Scholar] [CrossRef]
- Blanton, T.L. An experimental study of interaction between hydraulically induced and pre-existing fractures. In Proceedings of the SPE/DOE Unconventional Gas Recovery Symposium of the Society of Petroleum Engineers, Pittsburgh, PA, USA, 16–18 May 1982. [Google Scholar]
- Dusseault, M.B.; McLennan, J.; Shu, J. Massive multi-stage hydraulic fracturing for oil and gas recovery from low mobility reservoirs in China. Petrol. Drill. Tech. 2011, 39, 6–16. [Google Scholar]
- Kolawole, O.; Ispas, I. Interaction between hydraulic fractures and natural fractures: Current status and prospective directions. J. Petrol. Explor. Prod. Technol. 2020, 10, 1613–1634. [Google Scholar] [CrossRef] [Green Version]
- McLellan, P.J.; Cormier, K. Borehole Instability in Fissile, Dipping Shales, Northeastern British Columbia. In Proceedings of the SPE Gas Technology Symposium, Calgary, AB, Canada, 28 April 1996. [Google Scholar]
- Lecampion, B.; Zia, H. Slickwater hydraulic fracture propagation: Near-tip and radial geometry solutions. J. Fluid Mech. 2019, 880, 514–550. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, T.; Elsworth, D.; He, Y.L.; Zhou, W.; Zhuang, L.; Zeng, J.; Wang, S.F. Controls of natural fractures on the texture of hydraulic fractures in rock. J. Petrol. Sci. Eng. 2018, 165, 616–626. [Google Scholar] [CrossRef]
- Vermylen, J.; Zoback, M.D. Hydraulic fracturing, microseismic magnitudes, and stress evolution in the Barnett Shale. In Proceedings of the SPE Hydraulic Fracturing Technology Conference, The Woodlands, TX, USA, 24 January 2011. [Google Scholar]
Density (kg/m3) | Young’s Modulus (GPa) | Poisson’s Ratio | Internal Friction Angle (°) | Uniaxial Compressive Strength (MPa) | Tensile Strength (MPa) | Cohesion (MPa) | Fluid Viscosity (Pa·s) | Flow Rate (m³/s) |
---|---|---|---|---|---|---|---|---|
1710 | 14.3 | 0.21 | 45 | 55.4 | 5.6 | 11.5 | 1.18 | 5 × 10−7 |
Homogeneity Index | Mean Shear Stiffness (GPa/m) | Mean Normal Stiffness (GPa/m) | Mean Contact Tensile Strength (MPa) | Mean Contact Cohesion (MPa) | Mean Contact Friction Angle (°) |
---|---|---|---|---|---|
2 | 590,000 | 1,416,000 | 40 | 82 | 70 |
3 | 300,000 | 720,000 | 22 | 58 | 55 |
20 | 236,000 | 571,120 | 10 | 31 | 34 |
Interaction Behavior | σmax (MPa) | σmin (MPa) | Differential Stress (MPa) | Angle of Approach (°) |
---|---|---|---|---|
Crossing | 30 | 19 | 11 | 60 |
Offsetting | 30 | 23 | 7 | 30 |
Arresting | 30 | 21 | 9 | 45 |
Internal Friction Angle (°) | Young’s Modulus (GPa) | Poisson’s Ratio | Cohesion (MPa) | Tensile Strength (MPa) | Uniaxial Compressive Strength (MPa) | Density (kg/m3) |
---|---|---|---|---|---|---|
30 | 30 | 0.25 | 15.6 | 4 | 53.9 | 2700 |
Homogeneity Index of Incipient Fractures’ Micro-properties | Mean Shear Stiffness (GPa/m) | Mean Normal Stiffness (GPa/m) | Mean Contact Tensile Strength (MPa) | Mean Contact Cohesion (MPa) | Mean Contact Friction Angle (°) |
2 | 1,080,000 | 2,700,000 | 15 | 75 | 50 |
20 | 800,000 | 2,000,000 | 6.5 | 36 | 33 |
100 | 550,000 | 1,375,000 | 6.2 | 30 | 31 |
Natural Fractures’ Micro-Properties | Mean Shear Stiffness (GPa/m) | Mean Normal Stiffness (GPa/m) | Mean Contact Tensile Strength (MPa) | Mean Contact Cohesion (MPa) | Mean Contact Friction Angle (°) |
0.1 | 1 | 0 | 0 | 25 |
Modelling Scenarios | Modelling Cases | Fluid Rate (m³/s) | Fluid Viscosity (Pa·s) | Perforation Angle | Differential Stress (MPa) | Homogeneity Index |
---|---|---|---|---|---|---|
Scenario 1 | Case 1–1 | 1 × 10−7 | 1.18 | 45° | 7.5 MPa | 2 |
Case 1–2 | 5 × 10−7 | |||||
Case 1–3 | 1 × 10−6 | |||||
Case 1–4 | 5 × 10−6 | |||||
Scenario 2 | Case 2–1 | 1 × 10−7 | 1.18 | 45° | 7.5 MPa | 20 |
Case 2–2 | 5 × 10−7 | |||||
Case 2–3 | 1 × 10−6 | |||||
Case 2–4 | 5 × 10−6 |
Modelling Scenarios | Modelling Cases | Fluid Rate (m³/s) | Fluid Viscosity (Pa·s) | Perforation Angle | Differential Stress (MPa) | Homogeneity Index |
---|---|---|---|---|---|---|
Scenario 3 | Case 3–1 | 1 × 10−6 | 0.59 | 45° | 7.5 MPa | 2 |
Case 3–2 | 1.18 | |||||
Case 3–3 | 2.36 | |||||
Case 3–4 | 4.72 | |||||
Scenario 4 | Case 4–1 | 1 × 10−6 | 0.59 | 45° | 7.5 MPa | 20 |
Case 4–2 | 1.18 | |||||
Case 4–3 | 2.36 | |||||
Case 4–4 | 4.72 |
Modelling Scenarios | Modelling Cases | Fluid Rate (m³/s) | Fluid Viscosity (Pa·s) | Perforation Angle | Differential Stress (MPa) | Homogeneity Index |
---|---|---|---|---|---|---|
Scenario 5 | Case 5–1 | 1 × 10−6 | 1.18 | 15° | 7.5 MPa | 2 |
Case 5–2 | 30° | |||||
Case 5–3 | 45° | |||||
Case 5–4 | 60° | |||||
Case 5–5 | 75° | |||||
Scenario 6 | Case 6–1 | 1 × 10−6 | 1.18 | 15° | 7.5 MPa | 20 |
Case 6–2 | 30° | |||||
Case 6–3 | 45° | |||||
Case 6–4 | 60° | |||||
Case 6–5 | 75° |
Modelling Scenarios | Modelling Cases | Fluid Rate (m³/s) | Fluid Viscosity (Pa·s) | Perforation Angle | σmax (MPa) | σmin (MPa) | Approach Angle of NF | Homogeneity Index |
---|---|---|---|---|---|---|---|---|
Scenario 7 | Case 7–1 | 5 × 10−6 | 0.001 | 45° | 30 | 23 | 30° | 2 |
Case 7–2 | 30 | 21 | 45° | |||||
Case 7–3 | 30 | 19 | 60° | |||||
Scenario 8 | Case 8–1 | 5 × 10−6 | 0.001 | 45° | 30 | 23 | 30° | 20 |
Case 8–2 | 30 | 21 | 45° | |||||
Case 8–3 | 30 | 19 | 60° |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Xu, J.; Chen, L.; Zhang, M.; Sasaoka, T.; Shimada, H.; He, H. Numerical Investigation of Influence of Fluid Rate, Fluid Viscosity, Perforation Angle and NF on HF Re-Orientation in Heterogeneous Rocks Using UDEC T-W Method. Machines 2022, 10, 152. https://doi.org/10.3390/machines10020152
Zhang S, Xu J, Chen L, Zhang M, Sasaoka T, Shimada H, He H. Numerical Investigation of Influence of Fluid Rate, Fluid Viscosity, Perforation Angle and NF on HF Re-Orientation in Heterogeneous Rocks Using UDEC T-W Method. Machines. 2022; 10(2):152. https://doi.org/10.3390/machines10020152
Chicago/Turabian StyleZhang, Shuai, Jinhai Xu, Liang Chen, Mingwei Zhang, Takashi Sasaoka, Hideki Shimada, and Haiyang He. 2022. "Numerical Investigation of Influence of Fluid Rate, Fluid Viscosity, Perforation Angle and NF on HF Re-Orientation in Heterogeneous Rocks Using UDEC T-W Method" Machines 10, no. 2: 152. https://doi.org/10.3390/machines10020152
APA StyleZhang, S., Xu, J., Chen, L., Zhang, M., Sasaoka, T., Shimada, H., & He, H. (2022). Numerical Investigation of Influence of Fluid Rate, Fluid Viscosity, Perforation Angle and NF on HF Re-Orientation in Heterogeneous Rocks Using UDEC T-W Method. Machines, 10(2), 152. https://doi.org/10.3390/machines10020152