Improved Extreme Learning Machine Based UWB Positioning for Mobile Robots with Signal Interference
Abstract
:1. Introduction
2. Preliminary Positioning and Assessment Model
3. Precise Positioning Model
3.1. Construction of Overall Model
3.2. Construction of the ELM Model
3.3. Construction of GA-Optimized ELM Model
4. Experimental Results and Analysis
4.1. Experimental Apparatus
4.2. Data Preprocessing
4.3. Identification of Signal Interference
4.4. Preliminary Positioning Results and Analysis
4.5. Positioning Errors Compensation Model
4.5.1. Without Signal Interference
4.5.2. With Signal Interference
5. Conclusions
- By combining the advantages of ELM and GA, the GA-optimized ELM model, for optimizing the weight coefficients and thresholds of ELM by GA, is constructed, which can achieve both classification (discrete) and prediction (continuous).
- A binary classifier for the signal interference discrimination and positioning errors compensation model, based on the GA-optimized ELM model mentioned above, is proposed so as to judge whether the UWB signals are disturbed and compensate for the positioning errors, respectively.
- This proposed model was tested on 628 available datasets of actual scene experiments, and it is concluded from the comparison of results that the minimum RMSE with signal interference reduced dramatically (64.38% and 70.16%), which means improvement of accuracy compared with those results free of compensation and optimization. The position of mobile robots can be calculated with decimeter-level accuracy, even in complicated indoor environments.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Zhao, L.; He, Z. An in-coordinate interval adaptive Kalman filtering algorithm for INS/GPS/SMNS. In Proceedings of the IEEE 10th International Conference on Industrial Informatics, Beijing, China, 25–27 July 2012; pp. 41–44. [Google Scholar]
- Ulusar, U.D.; Celik, G.; Al-Turjman, F. Cognitive RF-based localization for mission-critical applications in smart cities: An overview. Comput. Electr. Eng. 2020, 87, 106780. [Google Scholar] [CrossRef]
- Khan, D.; Ullah, S.; Nabi, S. A Generic Approach toward Indoor Navigation and Pathfinding with Robust Marker Tracking. Remote Sens. 2019, 11, 3052. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Guan, W.; Hussain, B.; Yue, C.P. High Precision Indoor Robot Localization Using VLC Enabled Smart Lighting. In Proceedings of the Optical Fiber Communication Conference (OFC) 2021, Washington, DC, USA, 6–11 June 2021; p. M1B.8. [Google Scholar]
- Ashraf, I.; Hur, S.; Park, Y. Indoor Positioning on Disparate Commercial Smartphones Using Wi-Fi Access Points Coverage Area. Sensors 2019, 19, 4351. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, I.; Hur, S.; Park, Y. Enhancing Performance of Magnetic Field Based Indoor Localization Using Magnetic Patterns from Multiple Smartphones. Sensors 2020, 20, 2704. [Google Scholar] [CrossRef]
- Ashraf, I.; Hur, S.; Shafiq, M.; Kumari, S.; Park, Y. GUIDE: Smartphone sensors-based pedestrian indoor localization with heterogeneous devices. Int. J. Commun. Syst. 2019, 32, e4062. [Google Scholar] [CrossRef]
- Gomes, E.L.; Fonseca, M.; Lazzaretti, A.E.; Munaretto, A.; Guerber, C. Clustering and Hierarchical Classification for High-Precision RFID Indoor Location Systems. IEEE Sens J. 2021; in press. [Google Scholar]
- Zhang, L.; Zhang, S.; Leng, C.T. A Study on the Location System Based on Zigbee for Mobile Robot. Appl. Mech. Mater. 2014, 651, 612–615. [Google Scholar] [CrossRef]
- Liu, G.; Qian, Z.; Wang, X. An Indoor WLAN Location Algorithm Based on Fingerprint Database Processing. Intern. J. Pattern Recognit. Artif. Intell. 2020, 34, 2050026. [Google Scholar] [CrossRef]
- Zhang, L.; Meng, X.; Fang, C. Linear Regression Algorithm against Device Diversity for the WLAN Indoor Localization System. Wirel. Commun. Mob. Comput. 2021, 2021, 5530396. [Google Scholar] [CrossRef]
- Cazzorla, A.; Angelis, D.G.; Moschitta, A.; Dionigi, M.; Alimenti, F.; Carbone, P. A 5.6-GHz UWB Position Measurement System. IEEE Trans. Instrum. Meas. 2013, 62, 675–683. [Google Scholar] [CrossRef]
- Maranò, S.; Gifford, W.M.; Wymeersch, H.; Win, M.Z. NLOS identification and mitigation for localization based on UWB experimental data. IEEE J. Sel. Areas Commun. 2010, 28, 1026–1035. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Li, Q.; Queralta, J.P.; Heikkonen, J.; Westerlund, T. Applications of UWB Networks and Positioning to Autonomous Robots and Industrial Systems. In Proceedings of the 2021 10th Mediterranean Conference on Embedded Computing (MECO), Budva, Montenegro, 7–10 June 2021; pp. 1–6. [Google Scholar]
- Queralta, J.P.; Martínez Almansa, C.; Schiano, F.; Floreano, D.; Westerlund, T. UWB-based System for UAV Localization in GNSS-Denied Environments: Characterization and Dataset. In Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2021; pp. 4521–4528. [Google Scholar]
- Schmid, L.; Salido-Monzú, D.; Wieser, A. Accuracy Assessment and Learned Error Mitigation of UWB ToF Ranging. In Proceedings of the 2019 International Conference on Indoor Positioning and Indoor Navigation (IPIN), Pisa, Italy, 30 September–3 October 2019; pp. 1–8. [Google Scholar]
- Oguntala, G.; Abd-Alhameed, R.; Jones, S.; Noras, J.; Patwary, M.; Rodriguez, J. Indoor location identification technologies for real-time IoT-based applications: An inclusive survey. Comput. Sci. Rev. 2018, 30, 55–79. [Google Scholar] [CrossRef]
- Mortier, J.; Pagès, G.; Vilà-Valls, J. Robust TOA-Based UAS Navigation under Model Mismatch in GNSS-Denied Harsh Environments. Remote Sens. 2020, 12, 2928. [Google Scholar] [CrossRef]
- Tiemann, J.; Ramsey, A.; Wietfeld, C. Enhanced UAV Indoor Navigation through SLAM-Augmented UWB Localization. In Proceedings of the 2018 IEEE International Conference on Communications Workshops (ICC Workshops), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6. [Google Scholar]
- Khawaja, W.; Ozdemir, O.; Erden, F.; Guvenc, I.; Matolak, D.W. Ultra-Wideband Air-to-Ground Propagation Channel Characterization in an Open Area. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4533–4555. [Google Scholar] [CrossRef]
- Xu, H.; Wang, L.; Zhang, Y.; Qiu, K.; Shen, S. Decentralized Visual-Inertial-UWB Fusion for Relative State Estimation of Aerial Swarm. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 8776–8782. [Google Scholar]
- Corrales, J.A.; Candelas, F.A.; Torres, F. Hybrid tracking of human operators using IMU/UWB data fusion by a Kalman filter. In Proceedings of the 2008 3rd ACM/IEEE International Conference on Human-Robot Interaction (HRI), Amsterdam, The Netherlands, 12–15 March 2008; pp. 193–200. [Google Scholar]
- Waqar, A.; Ahmad, I.; Habibi, D.; Phung, Q.C. Analysis of GPS and UWB positioning system for athlete tracking. Meas. Sens. 2021, 14, 100036. [Google Scholar] [CrossRef]
- Monica, S.; Ferrari, G. Robust UWB-Based Localization with Application to Automated Guided Vehicles. Adv. Intell. Syst. 2021, 3, 2000083. [Google Scholar] [CrossRef]
- De Angelis, G.; Baruffa, G.; Cacopardi, S. GNSS/cellular hybrid positioning system for mobile users in urban scenarios. IEEE Trans. Intell. Transp. Syst. 2013, 14, 313–321. [Google Scholar] [CrossRef]
- Masiero, A.; Toth, C.; Gabela, J.; Retscher, G.; Kealy, A.; Perakis, H.; Gikas, V.; Grejner-Brzezinska, D. Experimental Assessment of UWB and Vision-Based Car Cooperative Positioning System. Remote Sens. 2021, 13, 4858. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Mucchi, L.; Caputo, S.; Biotti, L.; Ciani, L.; Marabissi, D.; Patrizi, G. Ultra-Wideband Radar-Based Indoor Activity Monitoring for Elderly Care. Sensors 2021, 21, 3158. [Google Scholar] [CrossRef]
- Lu, C.L.; Liu, Z.Y.; Huang, J.T.; Huang, C.I.; Wang, B.H.; Chen, Y.; Wu, N.H.; Wang, H.C.; Giarré, L.; Kuo, P.Y. Assistive Navigation Using Deep Reinforcement Learning Guiding Robot With UWB/Voice Beacons and Semantic Feedbacks for Blind and Visually Impaired People. Front. Robot. AI 2021, 8, 654132. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Wen, D.L. Positioning Information System of Indoor Food Delivery Robot Based on UWB. J. Phys. Conf. Ser. 2021, 1732, 012129. [Google Scholar] [CrossRef]
- Barral, V.; Escudero, C.J.; García-Naya, J.A.; Maneiro-Catoira, R. NLOS Identification and Mitigation Using Low-Cost UWB Devices. Sensors 2019, 19, 3464. [Google Scholar] [CrossRef] [Green Version]
- Djosic, S.; Stojanovic, I.; Jovanovic, M.; Nikolic, T.; Djordjevic, G.L. Fingerprinting-assisted UWB-based localization technique for complex indoor environments. Expert Syst. Appl. 2021, 167, 114188. [Google Scholar] [CrossRef]
- Pınar, O.E. TDOA based localization and its application to the initialization of LiDAR based autonomous robots. Rob. Auton. Syst. 2020, 131, 103590. [Google Scholar]
- Zhang, S.L.; Tan, X.Q.; Wu, Q.W. Indoor mobile robot localization based on multi-sensor fusion technology. Transducer Microsyst. Technol. 2021, 40, 53–56. [Google Scholar]
- Song, Y.; Guan, M.; Tay, W.P.; Law, C.L.; Wen, C. UWB/LiDAR Fusion for Cooperative Range-Only SLAM. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6568–6574. [Google Scholar]
- Jorge, P.Q.; Li, Q.Q.; Fabrizio, S.; Tomi, W. VIO-UWB-Based Collaborative Localization and Dense Scene Reconstruction within Heterogeneous Multi-Robot Systems. arXiv 2020, arXiv:2011.00830. [Google Scholar]
- Nguyen, T.M.; Cao, M.; Yuan, S.; Lyu, Y.; Nguyen, T.H.; Xie, L. VIRAL-Fusion: A Visual-Inertial-Ranging-Lidar Sensor Fusion Approach. IEEE Trans. Robot. 2021; accepted. [Google Scholar]
- Nguyen, V.D.; Soh, G.S.; Foong, S.; Wood, K. Localization of a Miniature Spherical Rolling Robot Using IMU, Odometry and UWB. In Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Quebec City, QC, Canada, 26–29 August 2018; Volume 5A. [Google Scholar]
- Sun, Y. Autonomous Integrity Monitoring for Relative Navigation of Multiple Unmanned Aerial Vehicles. Remote Sens. 2021, 13, 1483. [Google Scholar] [CrossRef]
- Fernando, E.; Mann, G.K.; De Silva, O.; Gosine, R.G. Design and Analysis of a Pose Estimator for Quadrotor MAVs With Modified Dynamics and Range Measurements. In Proceedings of the ASME 2017 Dynamic Systems and Control Conference, Tysons, VA, USA, 11–13 October 2017; p. V003T39A008. [Google Scholar]
- Liu, R.; Yuen, C.; Do, T.; Jiao, D.; Liu, X.; Tan, U. Cooperative relative positioning of mobile users by fusing IMU inertial and UWB ranging information. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 5623–5629. [Google Scholar]
- Chen, P.; Kuang, Y.; Chen, X. A UWB/Improved PDR Integration Algorithm Applied to Dynamic Indoor Positioning for Pedestrians. Sensors 2017, 17, 2065. [Google Scholar] [CrossRef] [Green Version]
- De Angelis, G.; Moschitta, A.; Carbone, P. Positioning Techniques in Indoor Environments Based on Stochastic Modeling of UWB Round-Trip-Time Measurements. IEEE Trans. Intell. Transp. Syst. 2016, 17, 2272–2281. [Google Scholar] [CrossRef]
- Guo, H.; Li, M. Indoor Positioning Optimization Based on Genetic Algorithm and RBF Neural Network. In Proceedings of the 2020 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 28–30 July 2020; pp. 778–781. [Google Scholar]
- Guo, H.; Li, M.Q.; Zhang, X.J.; Liu, Q.; Gao, X.T. Research on Indoor Wireless Positioning Precision Optimization Based on UWB. J. Web Eng. 2020, 19, 1017–1048. [Google Scholar] [CrossRef]
- Nguyen, D.T.; Lee, H.G.; Jeong, E.R.; Lee, H.L.; Joung, J. Deep Learning-Based Localization for UWB Systems. Electronics 2020, 9, 1712. [Google Scholar] [CrossRef]
- Nilwong, S.; Hossain, D.; Kaneko, S.-i.; Capi, G. Deep Learning-Based Landmark Detection for Mobile Robot Outdoor Localization. Machines 2019, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Rana, S.P.; Dey, M.; Siddiqui, H.U.; Tiberi, G.; Ghavami, M.; Dudley, S. UWB localization employing supervised learning method. In Proceedings of the 2017 IEEE 17th International Conference on Ubiquitous Wireless Broadband (ICUWB), Salamanca, Spain, 12–15 September 2017; pp. 1–5. [Google Scholar]
- Pan, H.; Qi, X.G.; Liu, M.L.; Liu, L.F. Map-aided and UWB-based anchor placement method in indoor localization. Neural. Comput. Appl. 2021, 33, 11845–11859. [Google Scholar] [CrossRef]
- Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing 2006, 70, 489–501. [Google Scholar] [CrossRef]
- Huang, Z.; Wu, W.; Liu, H.; Zhang, W.; Hu, J. Identifying Dynamic Changes in Water Surface Using Sentinel-1 Data Based on Genetic Algorithm and Machine Learning Techniques. Remote Sens. 2021, 13, 3745. [Google Scholar] [CrossRef]
- Zou, X.; Hu, Y.; Tian, Z.; Shen, K. Logistic Regression Model Optimization and Case Analysis. In Proceedings of the 2019 IEEE 7th International Conference on Computer Science and Network Technology (ICCSNT), Dalian, China, 19–20 October 2019; pp. 135–139. [Google Scholar]
- Borges, F.; Pinto, A.; Ribeiro, D.; Barbosa, T.; Pereira, D.; Magalháes, R.; Barbosa, B.; Ferreira, D. An Unsupervised Method based on Support Vector Machines and Higher-Order Statistics for Mechanical Faults Detection. IEEE Lat. Am. Trans. 2020, 18, 1093–1101. [Google Scholar] [CrossRef]
Model | Decawave-DWM1000 | |
---|---|---|
Power Supply | DC power | The input voltage is 2.8~3.6 V |
UWB Wireless Parameters | Supported protocols | IEEE802.15.4-2011 UWB protocol |
Frequency | 3.5 GHz~6.5 GHz | |
The rate of data transfer | Support 6.8 Mbps, 110 kbps and 850 kbps | |
Positioning Performance | Positioning accuracy | <30 cm (No occlusion) |
Recommended base station layout interval | <300 m | |
Supported ranging schemes | TOF and TDOA |
Serial Number | Classifier Name | Training Accuracy Rate | Test Accuracy Rate |
---|---|---|---|
1 | LR | 96.33% | 63.08% |
2 | SVM | 65.41% | 56.03% |
3 | ELM | 83.96% | 82.82% |
4 | GA-ELM | 97.92% | 96.72% |
The Coordinates of the Target | RMSE without Signal Interference (cm) | RMSE with Signal Interference (cm) |
---|---|---|
X | 5.0187 | 13.5421 |
Y | 4.6536 | 13.0012 |
Z | 50.5896 | 148.3624 |
(X, Y) | 6.8443 | 16.4087 |
(X, Y, Z) | 51.0505 | 79.3578 |
Serial Number | Target Coordinates | RMSE before Compensation (cm) | RMSE after Compensation (cm) | Reduction Percentage of RMSE |
---|---|---|---|---|
1 | X | 13.5421 | 10.1621 | 24.96% |
2 | Y | 13.0012 | 9.2658 | 28.73% |
3 | Z | 148.3624 | 77.6429 | 47.67% |
4 | (X, Y) | 16.4087 | 13.7522 | 16.19% |
5 | (X, Y, Z) | 79.3578 | 78.8514 | 0.64% |
Serial Number | Target Coordinates | RMSE before Ranging Errors Compensation (cm) | RMSE after Ranging Errors Compensation (cm) | RMSE after Z-Axis Errors Compensation (cm) | Reduction Percentage of RMSE |
---|---|---|---|---|---|
1 | X | 13.5421 | 10.1621 | — | 24.96% |
2 | Y | 13.0012 | 9.2658 | — | 28.73% |
3 | Z | 148.3624 | 77.6429 | 37.9811 | 51.08% |
4 | (X, Y) | 16.4087 | 13.7522 | — | 16.19% |
5 | (X, Y, Z) | 79.3578 | 78.8514 | 28.0861 | 64.38% |
Number | Technology | Environment | RMSE |
---|---|---|---|
1 | Proposed (GA-ELM, only UWB) | 5 × 5 × 3 m | 0.145 m (3D) |
2 | Zigbee [9] | 4 × 4 m | 0.636 m (2D) |
3 | LiDAR, SRD-LS [32] | 20 × 20 m | 0.35 m (2D) |
4 | GA-RBF, UWB [43] | 14 × 12 m | 0.10 m (2D) |
5 | UWB and PDR [41] | 8.5 × 4.5 m | 0.51 m (2D) |
6 | UWB with differential evolution [48] | 15 × 10 m | 0.56 m (2D) |
7 | UWB with monocular simultaneous [19] | 6 × 6 × 4.5 m | 0.139 m (3D) |
8 | UWB, IMU, multiple onboard visual-inertial and lidar odometry subsystems [36] | 6 × 4 × 3 m | 0.33 m (3D) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Duan, X.; Shang, C.; Ma, M.; Zhang, D. Improved Extreme Learning Machine Based UWB Positioning for Mobile Robots with Signal Interference. Machines 2022, 10, 218. https://doi.org/10.3390/machines10030218
Ma J, Duan X, Shang C, Ma M, Zhang D. Improved Extreme Learning Machine Based UWB Positioning for Mobile Robots with Signal Interference. Machines. 2022; 10(3):218. https://doi.org/10.3390/machines10030218
Chicago/Turabian StyleMa, Jun, Xuechao Duan, Chen Shang, Mengjiao Ma, and Dan Zhang. 2022. "Improved Extreme Learning Machine Based UWB Positioning for Mobile Robots with Signal Interference" Machines 10, no. 3: 218. https://doi.org/10.3390/machines10030218
APA StyleMa, J., Duan, X., Shang, C., Ma, M., & Zhang, D. (2022). Improved Extreme Learning Machine Based UWB Positioning for Mobile Robots with Signal Interference. Machines, 10(3), 218. https://doi.org/10.3390/machines10030218