An Adaptive Fusion Convolutional Denoising Network and Its Application to the Fault Diagnosis of Shore Bridge Lift Gearbox
Abstract
:1. Introduction
- (1)
- A 1D and 2D adaptive convolutional approach is proposed, through which the feature extraction capability of the network can be greatly enhanced. We design a 1D and 2D fused convolutional signal extraction layer (perception layer). First, the FFT-processed 1D information is fed into the 1D convolution input, and then the sequence of the original signal is aligned and fed into the 2D convolution input.
- (2)
- A Kalman filter-based method for updating network parameters is proposed. Improvements are made to the minibatch stochastic gradient descent (MSGD) method. The information within the minibatch is effectively integrated based on the Kalman filter mechanism.
2. Preliminary Work
2.1. Convolutional Neural Networks
2.2. CNN-Based Fault Diagnosis
3. The Proposed Method
3.1. Adaptive Fusion Convolutional Denoising Network
Algorithm 1: AF-CDN |
Input: Network , Training epoch , Input data and Output: Trained 1. Initialize network parameters 2. For do 3. Feed raw data into the network 4. Send the data to the perception layer to calculate 1D data and 2D data, respectively 5. Flatten and pool the 1D and 2D features of the perception layer output. The values after pooling are fed into classifier1 and inception layer, respectively 6. The values of the inception layer are pooled and fed into classifier2 and the next inception layer, respectively 7. The values of inception layer are pooled and fed into classifier3 8. Classifier3 combines the values of classifier1 and classifier2 to give the predicted output. 9. Calculate the loss value. Stop training if the training target is met, otherwise step forward. 10. Calculate the gradients and use the fusion algorithm to update the gradient value. 11. End |
3.2. Gradient Fusion Algorithm
4. Experimental Verification
4.1. Case One
4.1.1. Dataset Preparation and Parameter Settings
4.1.2. Experiment and Analysis
4.2. Case Two
4.2.1. Dataset Preparation and Parameter Settings
4.2.2. Experiment and Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, L.; Chatterton, S.; Pennacchi, P. A Novel Method of Frequency Band Selection for Squared Envelope Analysis for Fault Diagnosing of Rolling Element Bearings in a Locomotive Powertrain. Sensors 2018, 18, 4344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Y.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Li, H.; Liu, J.; Wu, K.; Yang, Z.; Liu, R.W.; Xiong, N. Spatio-Temporal Vessel Trajectory Clustering Based on Data Mapping and Density. IEEE Access 2018, 6, 58939–58954. [Google Scholar] [CrossRef]
- Gao, K.; Han, F.; Dong, P.; Xiong, N.; Du, R. Connected Vehicle as a Mobile Sensor for Real Time Queue Length at Signalized Intersections. Sensors 2019, 19, 2059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.; Tan, L.; Xiong, N. A Structure Fidelity Approach for Big Data Collection in Wireless Sensor Networks. Sensors 2014, 15, 248–273. [Google Scholar] [CrossRef] [Green Version]
- Ma, X.; Wen, C.; Wen, T. An Asynchronous and Real-Time Update Paradigm of Federated Learning for Fault Diagnosis. IEEE Trans. Ind. Inform. 2021, 17, 8531–8540. [Google Scholar] [CrossRef]
- Xia, M.; Li, T.; Xu, L.; Liu, L.; De Silva, C.W. Fault Diagnosis for Rotating Machinery Using Multiple Sensors and Convolutional Neural Networks. IEEE/ASME Trans. Mechatron. 2017, 23, 101–110. [Google Scholar] [CrossRef]
- Hu, Q.; He, Z.; Zhang, Z.; Zi, Y. Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble. Mech. Syst. Signal Process. 2007, 21, 688–705. [Google Scholar] [CrossRef]
- Yaqub, M.F.; Gondal, I.; Kamruzzaman, J. Inchoate Fault Detection Framework: Adaptive Selection of Wavelet Nodes and Cumulant Orders. IEEE Trans. Instrum. Meas. 2011, 61, 685–695. [Google Scholar] [CrossRef]
- Konar, P.; Chattopadhyay, P. Bearing fault detection of induction motor using wavelet and Support Vector Machines (SVMs). Appl. Soft Comput. 2011, 11, 4203–4211. [Google Scholar] [CrossRef]
- Wang, X.; Zheng, Y.; Zhao, Z.; Wang, J. Bearing Fault Diagnosis Based on Statistical Locally Linear Embedding. Sensors 2015, 15, 16225–16247. [Google Scholar] [CrossRef] [PubMed]
- Verstraete, D.; Ferrada, A.; Droguett, E.L.; Meruane, V.; Modarres, M. Deep Learning Enabled Fault Diagnosis Using Time-Frequency Image Analysis of Rolling Element Bearings. Shock Vib. 2017, 2017, 5067651. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998, 79, 61–78. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chen, Z.; Chai, Z.; Jiang, B.; Huang, B. A Single-Side Neural Network-Aided Canonical Correlation Analysis With Applications to Fault Diagnosis. IEEE Trans. Cybern. 2021, 1–13. [Google Scholar] [CrossRef]
- Chen, H.; Li, L.; Shang, C.; Huang, B. Fault Detection for Nonlinear Dynamic Systems With Consideration of Modeling Errors: A Data-Driven Approach. IEEE Trans. Cybern. 2022, 1–11. [Google Scholar] [CrossRef]
- Haykin, S. Neural networks expand SP’s horizons. IEEE Signal Process. Mag. 1996, 13, 24–49. [Google Scholar] [CrossRef]
- Guyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene Selection for Cancer Classification using Support Vector Machines. Mach. Learn. 2002, 46, 389–422. [Google Scholar] [CrossRef]
- Huang, S.; Liu, A.; Wang, T.; Xiong, N.N. BD-VTE: A Novel Baseline Data Based Verifiable Trust Evaluation Scheme for Smart Network Systems. IEEE Trans. Netw. Sci. Eng. 2020, 8, 2087–2105. [Google Scholar] [CrossRef]
- Yang, P.; Xiong, N.N.; Ren, J. Data Security and Privacy Protection for Cloud Storage: A Survey. IEEE Access 2020, 8, 131723–131740. [Google Scholar] [CrossRef]
- Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef] [Green Version]
- Eren, L.; Ince, T.; Kiranyaz, S. A Generic Intelligent Bearing Fault Diagnosis System Using Compact Adaptive 1D CNN Classifier. J. Signal Process. Syst. 2018, 91, 179–189. [Google Scholar] [CrossRef]
- Jiao, J.; Zhao, M.; Lin, J.; Zhao, J. A multivariate encoder information based convolutional neural network for intelligent fault diagnosis of planetary gearboxes. Knowl. Based Syst. 2018, 160, 237–250. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, G.; Xie, C.; Zhang, W.; Li, C.; Liu, S. ACDIN: Bridging the gap between artificial and real bearing damages for bearing fault diagnosis. Neurocomputing 2018, 294, 61–71. [Google Scholar] [CrossRef]
- Jia, F.; Lei, Y.; Lu, N.; Xing, S. Deep normalized convolutional neural network for imbalanced fault classification of machinery and its understanding via visualization. Mech. Syst. Signal Process. 2018, 110, 349–367. [Google Scholar] [CrossRef]
- Jiang, G.; He, H.; Yan, J.; Xie, P. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox. IEEE Trans. Ind. Electron. 2018, 66, 3196–3207. [Google Scholar] [CrossRef]
- Appana, D.K.; Prosvirin, A.; Kim, J.-M. Reliable fault diagnosis of bearings with varying rotational speeds using envelope spectrum and convolution neural networks. Soft Comput. 2018, 22, 6719–6729. [Google Scholar] [CrossRef]
- Guo, D.; Zhong, M.; Ji, H.; Liu, Y.; Yang, R. A hybrid feature model and deep learning based fault diagnosis for unmanned aerial vehicle sensors. Neurocomputing 2018, 319, 155–163. [Google Scholar] [CrossRef]
- Wen, L.; Li, X.; Gao, L.; Zhang, Y. A New Convolutional Neural Network-Based Data-Driven Fault Diagnosis Method. IEEE Trans. Ind. Electron. 2017, 65, 5990–5998. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Wu, L.; Sarkar, S.; Jiang, D. An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems. Mech. Syst. Signal Process. 2018, 117, 170–187. [Google Scholar] [CrossRef]
- Xin, Y.; Li, S.; Cheng, C.; Wang, J. An intelligent fault diagnosis method of rotating machinery based on deep neural networks and time-frequency analysis. J. Vibroengineering 2018, 20, 2321–2335. [Google Scholar] [CrossRef]
- Sun, W.; Yao, B.; Zeng, N.; Chen, B.; He, Y.; Cao, X.; He, W. An Intelligent Gear Fault Diagnosis Methodology Using a Complex Wavelet Enhanced Convolutional Neural Network. Materials 2017, 10, 790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.-C.; Chen, B.-Q.; Yao, B.; He, W.-P. Combining translation-invariant wavelet frames and convolutional neural network for intelligent tool wear state identification. Comput. Ind. 2019, 106, 71–84. [Google Scholar] [CrossRef]
- Case Western Reserve University Bearing Data Center Website. Available online: http://csegroups.case.edu/bearingdatacenter/home (accessed on 15 March 2017).
- Arulampalam, M.S.; Maskell, S.; Gordon, N.; Clapp, T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process. 2002, 50, 174–188. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Chai, Z.; Dogru, O.; Jiang, B.; Huang, B. Data-Driven Designs of Fault Detection Systems via Neural Network-Aided Learning. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–12. [Google Scholar] [CrossRef] [PubMed]
Fault Type | Fault Diameter (inch) | Label | Sample Size |
---|---|---|---|
H | Healthy | 0001 | 100 |
SH | Sub-Healthy | 0010 | 100 |
F | Failure | 0100 | 100 |
R | Run-in | 1000 | 100 |
Number of Experiments | 1D-CNN | Rawdata-CNN | AF-CDN |
---|---|---|---|
1 | 91.25% | 96.75% | 100.00% |
2 | 89.58% | 98.75% | 99.25% |
3 | 92.50% | 98.5% | 99.00% |
4 | 90.83% | 98.25% | 100% |
5 | 93.75% | 98.75% | 100% |
6 | 89.58% | 98.50% | 99.50% |
7 | 89.17% | 98.00% | 100.00% |
8 | 93.75% | 98.75% | 99.75% |
9 | 90.83% | 98.75% | 100.00% |
10 | 88.33% | 98.50% | 99.00% |
Mean accuracy | 90.56% | 98.35% | 99.65% |
Fault Type | Fault Diameter(inch) | Label | Sample Size |
---|---|---|---|
BFI | 0.007 | 000000001 | 300 |
BFII | 0.014 | 000000010 | 300 |
BFIII | 0.021 | 000000100 | 300 |
IFI | 0.007 | 000001000 | 300 |
IFII | 0.014 | 000010000 | 300 |
IFIII | 0.021 | 000100000 | 300 |
OFI | 0.007 | 001000000 | 300 |
OFII | 0.014 | 010000000 | 300 |
OFIII | 0.021 | 100000000 | 300 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Hu, X. An Adaptive Fusion Convolutional Denoising Network and Its Application to the Fault Diagnosis of Shore Bridge Lift Gearbox. Machines 2022, 10, 424. https://doi.org/10.3390/machines10060424
Zhao R, Hu X. An Adaptive Fusion Convolutional Denoising Network and Its Application to the Fault Diagnosis of Shore Bridge Lift Gearbox. Machines. 2022; 10(6):424. https://doi.org/10.3390/machines10060424
Chicago/Turabian StyleZhao, Rongqiang, and Xiong Hu. 2022. "An Adaptive Fusion Convolutional Denoising Network and Its Application to the Fault Diagnosis of Shore Bridge Lift Gearbox" Machines 10, no. 6: 424. https://doi.org/10.3390/machines10060424
APA StyleZhao, R., & Hu, X. (2022). An Adaptive Fusion Convolutional Denoising Network and Its Application to the Fault Diagnosis of Shore Bridge Lift Gearbox. Machines, 10(6), 424. https://doi.org/10.3390/machines10060424