Experimental Study of the Dynamic Short-Circuit Withstand Capability of an 8400 kVA Power Transformer Specially Designed for Photovoltaic Applications
Abstract
:1. Introduction
- The transformer is connected to the photovoltaic directly or through switchgear and it can often be subject to load rejection conditions and special load rejection conditions;
- The waveform can be severely distorted;
- The transformer may be subjected to frequent overcurrents;
- Asymmetrical voltages from an essentially sinusoidal wave;
- Abnormal harmonic currents, which can cause excessive losses and abnormal heating, are involved in DPV installations.
2. Design Characteristics of Transformers Used in Distributed Photovoltaic Systems
- Unbalanced voltages, which can create an unbalanced current system with known consequences;
- Unbalance in the windings and high iron flux when connecting an inverter;
- Increased magnetizing current and inrush current due to a DC in the windings;
- Unsynchronized waveforms at the inverter output, leading to a change in the waveform and the appearance of harmonics that disturb the magnetic flux of the transformer;
- Fast-rising waveform due to inverter switching, which produces voltage pulses with a large du/dt slope in the low voltage winding, which must withstand these dielectric stresses. For this purpose, grounded shields are used between the HV and LV windings;
- Some of the transformers in generation systems operate all day, 10–12 h/day, but when the system stores energy in battery systems, the transformer operates continuously under load.
- The most common type of transformer is the three-winding type, two LV and one HV;
- The arrangement of the windings in relation to the magnetic core must take into account the asymmetrical and unbalanced regimes by splitting, interleaving, and shielding them, as shown in Figure 2;
- The short-circuit impedance values of the two LV windings must be equal, although this is difficult to achieve;
- The insulation of the LV windings must be designed to withstand switching surges with a rise rate of up to (0.300–0.400) kV/µs. Typically, any switching surge in the LV windings caused by inverters propagates to the HV winding with the voltage ratio, and to prevent this phenomenon, the LV winding is electrostatically shielded;
- The transformer must be designed with low no-load losses, as it may have long idle periods;
- The cooling system must be adapted to the location and whether the transformer is operating in a substation or outdoors;
- If the transformer operates in a substation, the thermal class (5, 10, 15, or 20) representing the percentage of the transformer under load must be determined [28];
- It is necessary to take into account the transformer load curve, the effect of harmonics, and the effect of reactive load;
- Short-circuit calculations must take into account the layout of the windings (short-circuit impedance) and the additional connections on the LV winding;
- The ability of the transformer to withstand the short-circuit is verified by special tests where the short-circuit conditions are determined by the manufacturer, but usually, [28] is considered;
- It is known that when a transformer is connected in an open circuit, a peak current occurs, called an inrush current, which is the peak value of the transient no-load current and can be several hundred times higher than the value of the stabilized no-load current;
- Considering the goal of “green energy”, the environmental impact of mineral oil used in oil transformers and the choice of a dry-type transformer must be taken into account.
3. Experiments on an 8.4 MVA Transformer; 33 kV/0.66 − 0.66 kV
3.1. Technical Characteristics
3.2. Design Features
3.3. Experimental Technical Conditions
- Measurement of the ohmic resistance of the windings;
- Measurement of the transformation ratio and vector group determination;
- Measurement of losses and short-circuit impedance;
- Measurement of losses and no-load current;
- Dielectric tests with:
- Applied voltage;
- Induced voltage;
- Tap-changer testing.
- Temperature rise tests;
- Dielectric tests including lightning impulse tests;
- Noise level determination;
- Short-circuit tests.
3.4. Results of Routine Tests
3.5. Experiments on Short-Circuit Behavior
- Short-circuit on the high-voltage side of the transformer inverter, between the transformer and the grid [1], as shown in Figure 4a. In this case, the source of the main short-circuit current is from the power system. During the short-circuit, the inverter current is controlled by semiconductors and does not depend on the transformer impedance; initially, the peak and symmetrical short-circuit currents are the same as (or up to 150% higher than) the rated short-circuit current of the inverter;
- Short-circuit on the low voltage side of the transformer inverter, between the transformer and the inverter, as shown in Figure 4b.
3.6. Frequency Response Analysis
4. Conclusions
- No-load transformer operation requires low iron losses (PFe);
- Experiments confirm that the arrangement of the windings (split or alternated) leads to accepted short-circuit behavior and proves that unbalanced and asymmetrical regimes require special attention in design;
- Surges during thyristor switching (max 500 V/µs) require the shielding of LV windings and additional insulation;
- Low-voltage windings with two, three, or more identical windings present terminal connection problems;
- The separation of the LV and HV windings by columns is necessary to eliminate the disadvantages caused by unbalanced and unsymmetrical conditions;
- Attempting to demonstrate compliance with international standards is a difficult challenge;
- The results of the short-circuit tests and the measurements and checks performed during the tests do not reveal any condition of faults;
- The dielectric tests and other routine tests, when applicable, were successfully repeated, and the lightning impulse test, if specified, was successfully performed;
- The out-of-tank inspection does not reveal any defects such as displacements, shifts of laminations, or deformations of windings, connections, or supporting structures so significant that they might endanger the safe operation of the transformer;
- The frequency response analysis (FRA) is sufficient to detect changes in the active part;
- No traces of internal electrical discharge were found;
- The short-circuit reactance values, in ohms, evaluated for each phase at the end of the tests, do not differ from the original values by more than 7.5% for transformers with non-circular concentric coils with a short-circuit impedance of 3% or more. The value of 7.5% may be reduced by agreement between the manufacturer and the purchaser but not below 4%;
- The guaranteed uncertainty for the measured voltages and currents, taking into account the total measuring system, is less than 3%, unless mentioned otherwise.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- IEEE C.57.159; IEEE Guide for Transformers for Application in Distributed Photovoltaic (DPV) Power Generation Systems. IEEE Power and Energy Society: New York, NY, USA, 2016.
- IEEE C.57.110; IEEE Recommended Practice for Establishing Transformer Capability When Supplying Non-Sinusoidal Load Currents. IEEE Power and Energy Society: New York, NY, USA, 1998.
- IEEE std 519; IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems. IEEE Power and Energy Society: New York, NY, USA, 1992.
- Pezeshki, H.; Wolfs, P.J.; Ledwich, G. Impact of High PV Penetration on Distribution Transformer Insulation Life. IEEE Trans. Power Deliv. 2014, 29, 1212–1220. [Google Scholar] [CrossRef]
- IEC 60076-1; Power Transformers—Part 1: General. IEEE Power and Energy Society: New York, NY, USA, 2011.
- IEC 60076-11; Power Transformers—Part 11: Dry-Type. IEEE Power and Energy Society: New York, NY, USA, 2004.
- IEC 60076-14; Power Transformers—Part 14: Liquid-Immersed Power Transformers Using High-Temperature Insulation Materials. IEEE Power and Energy Society: New York, NY, USA, 2013.
- IEC 60076-16; Power Transformers—Part 16: Transformers for Wind turbine Applications. IEEE Power and Energy Society: New York, NY, USA, 2011.
- IEC 60076-7; Power Transformers—Part 7: Loading Guide for Mineral-Oil-Immersed Power Transformers. IEEE Power and Energy Society: New York, NY, USA, 2005.
- Krishnan, R.; Nair, K.R.M. Transformer for Distributed Photovoltaic (DPV) Generation. In Proceedings of the International Conference on Electrical, Electronics, Communication, Computer, and Optimization Techniques (ICEECCOT), Msyuru, India, 14–15 December 2018; pp. 1659–1663. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, L.; Shi, C.; Ma, K.; Li, Y.; Mu, H. Research on Measurement Technology of Transformer No-load Loss Based on Internet of Things. In Proceedings of the IEEE 8th International Conference on Advanced Power System Automation and Protection (APAP), Xi’an, China, 21–24 October 2019; pp. 150–153. [Google Scholar] [CrossRef]
- Salceanu, C.-E.; Nicola, M.; Nicola, C.; Ocoleanu, D.C.; Dobrea, C.; Iovan, D.; Enache, S. Numerical Simulations and Experimental Tests for the Analysis of Capacitive Load Switching in Power Circuits. In Proceedings of the International Conference and Exposition on Electrical and Power Engineering (EPE), Iasi, Romania, 20–22 October 2022; pp. 409–414. [Google Scholar] [CrossRef]
- Sălceanu, C.-E.; Nicola, M.; Nicola, C.-I.; Ocoleanu, D.; Dobrea, C.; Iovan, D.; Enache, S. Experimental Study on the Behavior of Aluminum Fuse Element Inside 24 kV, 50 kA High-Voltage Fuses. Energies 2022, 15, 7171. [Google Scholar] [CrossRef]
- Salceanu, C.-E.; Nicola, M.; Ocoleanu, D.; Iovan, D.; Enache, S. Experimental Study of HBC Fuses with Aluminium Fuse Element at Minimum Rated Breaking Current. In Proceedings of the International Conference on Applied and Theoretical Electricity (ICATE), Craiova, Romania, 27–29 May 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, R.; Rapp, K.J.; Liu, G. Test Comparison Study on a Natural Ester Retro-filled 220kV Power Transformer. In Proceedings of the IEEE International Conference on High Voltage Engineering and Application (ICHVE), Beijing, China, 6–10 September 2020; pp. 1–4. [Google Scholar] [CrossRef]
- Schweiger, E.; Ettl, C.; Hennig, E.G.; Riegler, S.; Stoessl, M.; Bose, S. Resilience solutions for bypassing power transformers and recommendations of site commissioning tests. In Proceedings of the IEEE Power & Energy Society General Meeting (PESGM), Atlanta, GA, USA, 4–8 August 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Takacs, K.; Frivaldsky, M. Simulation design of residential smart-grid based on solid-state transformer. In Proceedings of the 2022 ELEKTRO (ELEKTRO), Krakow, Poland, 23–26 May 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Yue, S.; Ji, W.; Xu, J.; Zhang, J.; Wang, S. Research on Black Start of High-Proportion Renewable Energy System Based on Solar-Storage Generation System. In Proceedings of the IEEE Sustainable Power and Energy Conference (iSPEC), Perth, Australia, 4–7 December 2022; pp. 1–6. [Google Scholar] [CrossRef]
- De-Paz-Centeno, I.; García-Ordás, M.T.; García-Olalla, Ó.; Girón-Casares, C.; Alaiz-Moretón, H. A Granularity Invariant Method for the Classification of Energy Production Time Series in Photovoltaic Plants. IEEE Access 2023, 11, 16923–16933. [Google Scholar] [CrossRef]
- Shah, A.M.; Bhalja, B.R.; Patel, R.M.; Bhalja, H.; Agarwal, P.; Makwana, Y.M.; Malik, O.P. Quartile Based Differential Protection of Power Transformer. IEEE Trans. Power Deliv. 2020, 35, 2447–2458. [Google Scholar] [CrossRef]
- Moscoso, M.; Lloyd, G.J.; Liu, K.; Wang, Z. Improvements to transformer differential protection-Design and test experience. In Proceedings of the 47th International Universities Power Engineering Conference (UPEC), London, UK, 4 September 2012; pp. 1–6. [Google Scholar]
- Pires, V.F.; Cabral, A.; Guerreiro, M. Transformer differential protection based on the 3D current trajectory mass center. In Proceedings of the 4th International Conference on Power Engineering, Energy and Electrical Drives, Istanbul, Turkey, 13–17 May 2013; pp. 52–57. [Google Scholar]
- Saleh, S.A.; Ozkop, E. ANSI 87T-Based Differential Protection of 3ϕ Solid-State Transformers. In Proceedings of the IEEE Industry Applications Society Annual Meeting, Detroit, MI, USA, 10–16 October 2020; pp. 1–9. [Google Scholar] [CrossRef]
- Saleh, S.A.M.; Richard, C.; Onge, X.F.S.; McDonald, K.M.; Ozkop, E.; Chang, L.; Alsayid, B. Solid-State Transformers for Distribution Systems–Part I: Technology and Construction. IEEE Trans. Ind. Appl. 2019, 55, 4524–4535. [Google Scholar] [CrossRef]
- Saleh, S.A.; Ozkop, E.; Alsayid, B.; Richard, C.; Onge, X.F.S.; McDonald, K.M.; Chang, L. Solid-State Transformers for Distribution Systems–Part II: Deployment Challenges. IEEE Trans. Ind. Appl. 2019, 55, 5708–5716. [Google Scholar] [CrossRef]
- Topolski, Ł. Mitigation of Voltage Swells and Unbalance Caused by Photovoltaic Installations Using a Balancing Transformer and an Automatic Voltage Regulator in Low-Voltage Networks. In Proceedings of the 12th International Conference and Exhibition on Electrical Power Quality and Utilisation (EPQU), Cracow, Poland, 14–15 September 2020; pp. 1–5. [Google Scholar] [CrossRef]
- Pacheco, P.; Cuesto, M.; Burgos, M. Sizing Step-up Transformers for Solar Generation based on Load Profiles Predictability. In Proceedings of the 6th International Advanced Research Workshop on Transformers (ARWtr), Cordoba, Spain, 7–9 October 2019; pp. 37–41. [Google Scholar] [CrossRef]
- IEC 60076-5; Power Transformers—Part 5: Ability to Withstand Short Circuit. IEEE Power and Energy Society: New York, NY, USA, 2006.
- IEC 60076-8; Power Transformers—Part 8: Application Guide. IEEE Power and Energy Society: New York, NY, USA, 1997.
- IEC 60076-18; Power Transformers—Part 18: Measurement of Frequency Response. IEEE Power and Energy Society: New York, NY, USA, 2012.
- She, X.; Huang, A.Q.; Burgos, R. Review of Solid-State Transformer Technologies and Their Application in Power Distribution Systems. IEEE J. Emerg. Sel. Top. Power Electron. 2013, 1, 186–198. [Google Scholar] [CrossRef]
- Chen, H.; Prasai, A.; Moghe, R.; Chintakrinda, K.; Divan, D. A 50-kVA Three-Phase Solid-State Transformer Based on the Minimal Topology: Dyna-C. IEEE Trans. Power Electron. 2016, 31, 8126–8137. [Google Scholar] [CrossRef]
- Guillod, T.; Krismer, F.; Kolar, J.W. Protection of MV Converters in the Grid: The Case of MV/LV Solid-State Transformers. IEEE J. Emerg. Sel. Top. Power Electron. 2017, 5, 393–408. [Google Scholar] [CrossRef]
- Mohan, N.; Undeland, R.M.; Robbins, W.P. Power Electronics, Converters, Applications and Design, 2nd ed.; John Wiley & Sons: Hobroken, NJ, USA, 1995; p. 24. [Google Scholar]
- Surirey, Q.; Hernandez-Vidal, R.; Renaudineau, H.; Kouro, S.; Cabon, B. Sub-module photovoltaic microinverter with cascaded push-pull and unfolding H-bridge inverter. In Proceedings of the IEEE Southern Power Electronics Conference (SPEC), Puerto Varas, Chile, 4–7 December 2017; pp. 1–6. [Google Scholar] [CrossRef]
Measurement of Winding Resistance Temperature 20.4 (°C) | Tape | 1U1V (mΩ) | 1V1W (mΩ) | 1U1W (mΩ) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HV winding | 1 | 427.96 | 426.57 | 425.89 | ||||||||||
2 | 415.99 | 415.97 | 415.27 | |||||||||||
3 | 405.42 | 405.34 | 404.76 | |||||||||||
4 | 395.13 | 395.00 | 394.41 | |||||||||||
5 | 384.68 | 384.82 | 384.10 | |||||||||||
LV winding | 2U2V (µΩ) | 2V2W (µΩ) | 2W2U (µΩ) | |||||||||||
403.48 | 429.86 | 430.57 | ||||||||||||
3U3V(µΩ) | 3V3W(µΩ) | 3W3U(µΩ) | ||||||||||||
440.89 | 440.53 | 454.46 | ||||||||||||
Measurement of voltage ratio vector group Dyn11 | 1U1W/2V2W (Jumper 1W-1V) | 1V1U/2W2U (Jumper 1U-1W) | 1W1V/2U2V (Jumper 1V-1U) | |||||||||||
Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | |||
1 | 90.933 | 90.811 | −0.13 | 1 | 90.933 | 90.811 | −0.13 | 1 | 90.933 | 90.810 | −0.13 | |||
2 | 88.768 | 88.675 | −0.10 | 2 | 88.768 | 88.676 | −0.10 | 2 | 88.768 | 88.713 | −0.06 | |||
3 | 86.603 | 86.558 | −0.05 | 3 | 86.603 | 86.573 | −0.03 | 3 | 86.603 | 86.597 | −0.01 | |||
4 | 84.437 | 84.456 | 0.02 | 4 | 84.437 | 84.470 | 0.02 | 4 | 84.437 | 84.469 | 0.04 | |||
5 | 82.272 | 82.340 | 0.08 | 5 | 82.272 | 82.340 | 0.08 | 5 | 82.272 | 82.361 | 0.11 | |||
1U1W/3V3W (Jumper 1W-1V) | 1V1U/3W3U (Jumper 1U-1W) | 1W1V/3U3V (Jumper 1V-1U) | ||||||||||||
Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | |||
1 | 90.933 | 90.812 | −0.13 | 1 | 90.933 | 90.829 | −0.11 | 1 | 90.933 | 90.813 | −0.13 | |||
2 | 88.768 | 88.712 | −0.06 | 2 | 88.768 | 88.714 | −0.06 | 2 | 88.768 | 88.713 | −0.06 | |||
3 | 86.603 | 86.597 | −0.01 | 3 | 86.603 | 86.597 | −0.01 | 3 | 86.603 | 86.597 | −0.01 | |||
4 | 84.437 | 84.470 | 0.04 | 4 | 84.437 | 84.470 | 0.04 | 4 | 84.437 | 84.488 | 0.06 | |||
5 | 82.272 | 82.352 | 0.10 | 5 | 82.272 | 82.366 | 0.11 | 5 | 82.272 | 82.376 | 0.13 | |||
Measurement of short-circuit impedance and load lose TAP POSI-TION-1 | 4200 kVA 2U-2V-2W short-circuited | 4200 KVA 3U-3V-3W short-circuited | ||||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | |||||||||
U | 69.420 | 1419 | 8576 | U | 69.582 | 1454 | 8845 | |||||||
V | 70.282 | 1409 | 8979 | V | 70.404 | 1443 | 10,344 | |||||||
W | 69.677 | 1414 | 10,480 | W | 69.198 | 1450 | 11,222 | |||||||
Avrg. | 69.793 | 1414 | Σ: 28,035 | Avrg. | 69.728 | 1449 | Σ: 30,411 | |||||||
Δcorr. | 1.0027 | Γcorr. | 1.0054 | Δcorr. | 1.0036 | Γcorr. | 1.0072 | |||||||
In: 69.982 A | Un: 2449.12 V | Pk: 28,187 W | In: 69.982 | Un: 2509.74 V | Pk: 30,633 W | |||||||||
Pk(75 °C) = 27,776 W | Uk(75 °C) % = 7.11 | Pk(75 °C) = 29,973 W | Uk(75 °C) % = 7.30 | |||||||||||
Measurement of short-circuit impedance and load lose TAP POSI-TION-3 | 4200 kVA 2U-2V-2W short-circuited | 4200 KVA 3U-3V-3W short-circuited | ||||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | |||||||||
U | 73.060 | 1335 | 8597 | U | 73.273 | 1369 | 8885 | |||||||
V | 73.957 | 1325 | 9013 | V | 74.142 | 1359 | 10,432 | |||||||
W | 73.304 | 1330 | 10,531 | W | 72.820 | 1365 | 11,285 | |||||||
Avrg. | 73.440 | 1330 | Σ: 28,141 | Avrg. | 73.412 | 1364 | Σ: 30,662 | |||||||
Δcorr. | 1.0005 | Γcorr. | 1.0011 | Δcorr. | 1.0009 | Γcorr. | 1.0018 | |||||||
In: 73.481 A | Un: 2303.63 V | Pk: 28,172 W | In: 73.481 A | Un: 2363.09 V | Pk: 30,660 W | |||||||||
Pk(75 °C) = 27,823 W | Uk(75 °C) % = 7.01 | Pk(75 °C) = 30,054 W | Uk(75 °C) % = 7.20 | |||||||||||
Measurement of short-circuit impedance and load lose TAP POSITION-5 | 4200 kVA 2U-2V-2W short-circuited | 4200 KVA 3U-3V-3W short-circuited | ||||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | |||||||||
U | 77.073 | 1256 | 8682 | U | 77.425 | 1291 | 8979 | |||||||
V | 77.966 | 1246 | 9083 | V | 78.281 | 1280 | 10,548 | |||||||
W | 77.308 | 1251 | 10,629 | W | 76.899 | 1286 | 11,407 | |||||||
Avrg. | 77.449 | 1251 | Σ: 28,394 | Avrg. | 77.535 | 1286 | Σ: 30,934 | |||||||
Δcorr. | 0.9987 | Γcorr. | 0.9974 | Δcorr. | 0.9975 | Γcorr. | 0.9951 | |||||||
In: 77.348 A | Un: 2166.80 V | Pk: 28,320 W | In: 77.348 A | Un: 2226.84 V | Pk: 30,785 W | |||||||||
Pk(75 °C) = 28,012 W | Uk(75 °C) % = 6.93 | Pk(75 °C) = 30,225 W | Uk(75 °C) % = 7.12 | |||||||||||
Measurement of no-load loss and current | Excitation Factor 90% | Excitation Factor 100% | Excitation Factor 110% | |||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | Current A | Voltage V | Power W | ||||||
U | 6.212 | 344.54 | 2025.0 | U | 10.646 | 382.74 | 3031.0 | U | 51.161 | 417.16 | 8525.0 | |||
V | 3.654 | 342.34 | 1070.0 | V | 7.034 | 379.6 | 1328.0 | V | 36.670 | 421.66 | 725.2 | |||
W | 5.926 | 342.03 | 1558.0 | W | 11.065 | 380.88 | 1842.0 | W | 55.754 | 418.76 | 385.8 | |||
Avrg. | 5.264 | 342.97 | Σ: 4653 | Avrg. | 9.582 | 381.07 | Σ: 6201 | Avrg. | 47.862 | 419.20 | Σ: 9636 | |||
VRMS = 594.6 V | VMEAN = 594.0 V | VRMS = 661.7 V | VMEAN = 660.0 V | P0 GUARANTEED = 7200 W + 15% | VRMS = 739.9 V | VMEAN = 726.1 V | ||||||||
I0 = 5.264 A | I0 = 0.14% | P0 = 4649 W | I0 = 9.582 A | I0 = 0.26% | P0 = 6185 W | I0 = 47.862 A | I0 = 1.30% | P0 = 9453 W |
No. of Short-Circuit Tests. | 3 | 3 | 3 | |
---|---|---|---|---|
Tapping | No. | 1 | 3 | 5 |
Voltage (kV) | 34.65 | 33 | 31.35 | |
Short-circuit time (s) | 0.25 | 0.25 | 0.25 | |
Current peak value (A) | 2307.5 | 2442.8 | 2583.4 | |
Current r.m.s. value (A) | 934.2 | 988.9 | 1045.9 | |
Value of factor k | 2.47 | 2.47 | 2.47 | |
Experiment scheme type | Three-phase | |||
Short-circuit type | Pre-set |
No. of Short-Circuit Tests. | 3 | 3 | 3 | |
---|---|---|---|---|
Tapping | No. | 1 | 3 | 5 |
Voltage (kV) | 34.65 | 33 | 31.35 | |
Short-circuit time (s) | 0.25 | 0.25 | 0.25 | |
Current peak value (A) | 2241.3 | 2372.2 | 2498.3 | |
Current r.m.s. value (A) | 911.1 | 964.3 | 1019.7 | |
Value of factor k | 2.46 | 2.46 | 2.45 | |
Experiment scheme type | Three-phase | |||
Short-circuit type | Pre-set |
Tapping | Inductances (mH) | Inductances Variation (%) | |||||
---|---|---|---|---|---|---|---|
UV | VW | WU | UV (%) | VW (%) | WU (%) | ||
1 | 123.29 | 124.47 | 125.15 | Before | 5.63 | 6.43 | 6.00 |
130.24 | 132.48 | 132.66 | After | ||||
3 | 110.18 | 111.23 | 111.88 | Before | 5.72 | 6.49 | 6.05 |
116.49 | 118.45 | 118.65 | After | ||||
5 | 98.24 | 99.2 | 99.79 | Before | 5.73 | 6.48 | 6.12 |
103.87 | 105.63 | 105.9 | After |
Tapping | Inductances (mH) | Inductances Variation (%) | |||||
---|---|---|---|---|---|---|---|
UV | VW | UV | VW | UV | VW | UV | |
1 | 127.76 | 128.71 | 128.76 | Before | 3.31 | 3.12 | 2.67 |
132 | 132.73 | 132.2 | After | ||||
3 | 114.21 | 115 | 115.13 | Before | 3.36 | 3.19 | 2.67 |
118.05 | 118.67 | 118.21 | After | ||||
5 | 101.87 | 102.57 | 102.7 | Before | 3.42 | 3.22 | 2.74 |
105.36 | 105.88 | 105.52 | After |
Measurement of Winding Resistance Temperature 25.3 (°C) | Tape | 1U1V (mΩ) | 1V1W (mΩ) | 1U1W (mΩ) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HV winding | 1 | 434.09 | 433.98 | 433.55 | |||||||||
2 | 423.79 | 423.67 | 423.21 | ||||||||||
3 | 413.09 | 412.94 | 412.49 | ||||||||||
4 | 402.67 | 402.94 | 402.05 | ||||||||||
5 | 391.99 | 391.87 | 391.39 | ||||||||||
LV winding | 2U2V (µΩ) | 2V2W (µΩ) | 2W2U (µΩ) | ||||||||||
408.75 | 433.47 | 437.02 | |||||||||||
3U3V (µΩ) | 3V3W (µΩ) | 3W3U (µΩ) | |||||||||||
449.53 | 455.39 | 468.28 | |||||||||||
Measurement of voltage ratio vector group Dyn11 | 1U-1V1W/2U-2W | 1V-1W1U/2V-2U | 1W-1U1V/2W-2V | ||||||||||
Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | ||
1 | 45.466 | 45.373 | −0.21 | 1 | 45.466 | 45.386 | −0.18 | 1 | 45.466 | 45.392 | −0.16 | ||
2 | 44.384 | 44.330 | −0.12 | 2 | 44.384 | 44.338 | −0.10 | 2 | 44.384 | 44.341 | −0.10 | ||
3 | 43.301 | 43.279 | −0.05 | 3 | 43.301 | 43.284 | −0.04 | 3 | 43.301 | 43.286 | −0.04 | ||
4 | 42.219 | 42.220 | 0.00 | 4 | 42.219 | 42.228 | 0.02 | 4 | 42.219 | 42.229 | 0.02 | ||
5 | 41.136 | 41.168 | 0.08 | 5 | 41.136 | 41.172 | 0.09 | 5 | 41.136 | 41.174 | 0.09 | ||
1U-1V1W/3U-3W | 1V-1W1U/3V-3U | 1W-1U1V/3W-3V | |||||||||||
Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | Tape | Calc. | Meas. | Dev. | ||
1 | 45.466 | 45.388 | −0.17 | 1 | 45.466 | 45.395 | −0.16 | 1 | 45.466 | 45.397 | −0.15 | ||
2 | 44.384 | 44.335 | −0.11 | 2 | 44.384 | 44.341 | −0.10 | 2 | 44.384 | 44.342 | −0.09 | ||
3 | 43.301 | 43.279 | −0.05 | 3 | 43.301 | 43.284 | −0.04 | 3 | 43.301 | 43.286 | −0.04 | ||
4 | 42.219 | 42.224 | 0.01 | 4 | 42.219 | 42.229 | 0.02 | 4 | 42.219 | 42.229 | 0.02 | ||
5 | 41.136 | 41.166 | 0.07 | 5 | 41.136 | 41.172 | 0.09 | 5 | 41.136 | 41.173 | 0.09 | ||
Measurement of short-circuit impedance and load loss TAP POSI-TION-1 | 4200 kVA 2U-2V-2W short-circuited | 4200 KVA 3U-3V-3W short-circuited | |||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | ||||||||
U | 69.734 | 1499 | 8638 | U | 69.152 | 1513 | 10,006 | ||||||
V | 70.940 | 1488 | 9147 | V | 70.008 | 1502 | 9315 | ||||||
W | 69.143 | 1494 | 11,091 | W | 70.027 | 1507 | 11,499 | ||||||
Avrg. | 70.272 | 1494 | Σ: 28,876 | Avrg. | 69.729 | 1507 | Σ: 30,820 | ||||||
Δcorr. | 0.9958 | Γcorr. | 0.9917 | Δcorr. | 1.0036 | Γcorr. | 1.0072 | ||||||
In = 69.982 A | Un = 2449.12V | Pk = 28,638 W | In = 69.982 A | Un = 2610.78 W | Pk = 30,438 W | ||||||||
Pk(75 °C) = 28,199 W | Uk(75 °C) % = 7.46 | Pk(75 °C) = 29,973 W | Uk(75 °C) % = 7.59 | ||||||||||
Measurement of short-circuit impedance and load loss TAP POSI-TION-3 | 4200 kVA 2U-2V-2W short-circuited | 4200 kVA 3U-3V-3W short-circuited | |||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | ||||||||
U | 72.742 | 1398.00 | 8512 | U | 72.810 | 1424.00 | 10,043 | ||||||
V | 73.977 | 1386.00 | 9032 | V | 73.695 | 1414.00 | 9387 | ||||||
W | 73.122 | 1392.00 | 10,954 | W | 73.690 | 1419.00 | 11,558 | ||||||
Avrg. | 73.280 | 1392.00 | Σ: 28,498 | Avrg. | 73.398 | 1419.00 | Σ: 30,988 | ||||||
Δcorr. | 1.0027 | Γcorr. | 1.0054 | Δcorr. | 1.0011 | Γcorr. | 1.0022 | ||||||
In: 73.481 A | Un: 2411.01 V | Pk: 28,654 W | In = 73.481A | Un = 2457.78 V | Pk = 31,058 W | ||||||||
Pk(75 °C) = 28,270 W | Uk(75 °C) % = 7.35 | Pk(75 °C) = 30,506 W | Uk(75 °C) % = 7.49 | ||||||||||
Measurement of short-circuit impedance and load loss TAP POSITION-5 | 4200 kVA 2U-2V-2W short-circuited | 4200 KVA 3U-3V-3W short-circuited | |||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | ||||||||
U | 76.693 | 1314 | 8594 | U | 76.891 | 1324 | 10,149 | ||||||
V | 77.960 | 1302 | 9094 | V | 77.798 | 1332 | 9501 | ||||||
W | 77.070 | 1308 | 11,040 | W | 77.807 | 1336 | 11,690 | ||||||
Avrg. | 77.241 | 1308 | Σ: 28,728 | Avrg. | 77.499 | 1337 | Σ: 31,340 | ||||||
Δcorr. | 1.0013 | Γcorr. | 1.0027 | Δcorr. | 0.9980 | Γcorr. | 0.9961 | ||||||
In: 77.348 A | Un: 2265.52 V | Pk: 28,808 W | In: 77.348 A | Un: 2315.17 V | Pk: 31,219 W | ||||||||
Pk(75 °C) = 28,461 W | Uk(75 °C) % = 7.26 | Pk(75 °C) = 30,703 W | Uk(75 °C) % = 7.40 | ||||||||||
Measurement of no-load loss and current | Excitation Factor 90% | Excitation Factor 100% | Excitation Factor 110% | ||||||||||
Current A | Voltage V | Power W | Current A | Voltage V | Power W | Current A | Voltage V | Power W | |||||
U | 6.468 | 344.58 | 2059.0 | U | 11.676 | 382.94 | 3098.0 | U | 55.518 | 416.52 | 9020.0 | ||
V | 3.884 | 342.33 | 1108.0 | V | 7.797 | 379.53 | 1435.0 | V | 39.849 | 422.39 | 680.0 | ||
W | 6.100 | 341.97 | 1540.0 | W | 11.725 | 380.73 | 1760.0 | W | 60.357 | 418.66 | 111.2 | ||
Avrg. | 5.484 | 342.96 | Σ: 4707 | Avrg. | 10.399 | 381.07 | Σ: 6293 | Avrg. | 51.908 | 419.19 | Σ: 9636 | ||
VRMS = 594.7 V | VMEAN = 594.0 V | P0 = 4702 W | VRMS = 661.9 V | VMEAN = 660.0 V | P0GUARANTEED = 7200 W + 15% | VRMS = 740.7 V | VMEAN = 726.1 V | ||||||
I0 = 5.484 A | I0 = 0.15% | I0 = 10.399 A | I0 = 0.28% | P0 = 9613W | I0 = 51.908 A | I0 = 1.41% P0 = 9613 W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sălceanu, C.-E.; Dobrea, C.; Ocoleanu, D.; Nicola, M.; Iovan, D.; Nițu, M.-C. Experimental Study of the Dynamic Short-Circuit Withstand Capability of an 8400 kVA Power Transformer Specially Designed for Photovoltaic Applications. Machines 2023, 11, 969. https://doi.org/10.3390/machines11100969
Sălceanu C-E, Dobrea C, Ocoleanu D, Nicola M, Iovan D, Nițu M-C. Experimental Study of the Dynamic Short-Circuit Withstand Capability of an 8400 kVA Power Transformer Specially Designed for Photovoltaic Applications. Machines. 2023; 11(10):969. https://doi.org/10.3390/machines11100969
Chicago/Turabian StyleSălceanu, Cristian-Eugeniu, Cătălin Dobrea, Daniel Ocoleanu, Marcel Nicola, Daniela Iovan, and Maria-Cristina Nițu. 2023. "Experimental Study of the Dynamic Short-Circuit Withstand Capability of an 8400 kVA Power Transformer Specially Designed for Photovoltaic Applications" Machines 11, no. 10: 969. https://doi.org/10.3390/machines11100969
APA StyleSălceanu, C. -E., Dobrea, C., Ocoleanu, D., Nicola, M., Iovan, D., & Nițu, M. -C. (2023). Experimental Study of the Dynamic Short-Circuit Withstand Capability of an 8400 kVA Power Transformer Specially Designed for Photovoltaic Applications. Machines, 11(10), 969. https://doi.org/10.3390/machines11100969