Investigation of Flow and Heat Transfer Characteristics in Microchannels with Fins
Abstract
:1. Introduction
2. Methods
2.1. Physical Model and Simulation Assumptions
2.2. Boundary Conditions and Data Processing
- Laminar flow.
- The flow satisfies the continuous medium hypothesis.
- The flow is steady and incompressible.
- The thermophysical properties of the solid are constant.
- Body force and radiation heat transfer are ignored.
2.3. Grid Independence and Model Validation
3. Results and Discussion
3.1. Aspect Ratio of Fins
3.2. Incident Angle of Fins
3.3. Smoothness of Fins
4. Conclusions
- (1)
- Fins always increase the flow resistance within the investigated range, although this increase is less than that in the heat transfer.
- (2)
- Fins do not always promote heat transfer. At low Re, the fluid only slides through the fin intervals, and the boundary layers do not redevelop. Thus, a smooth microchannel without internal microstructures exhibits the best heat transfer characteristics for Re < 100. However, at high Re values, such as Re > 100, microchannels with fins show a better performance. These observations can be attributed to the redevelopment of the boundary layer, separation of the mainstream, formation of vortices, and mixing of the fluids.
- (3)
- Fins with a high aspect ratio, small incidence angle, and high smoothness showed exceptional performance within the scope of this work. This is because they avoid low-velocity vortex zones owing to flares and sharp corners and simultaneously promote mixing of hot and cold fluids, leading to the destruction and redevelopment of the boundary layer.
- (4)
- The incidence angle is the most critical structural parameter within the scope of this investigation. It mainly affects the mainstream and boundary layers of the fluid by periodically influencing the cross-sectional area and flow direction of the channel, thereby affecting the flow and heat transfer characteristics.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khattak, Z.; Ali, H.M. Air Cooled Heat Sink Geometries Subjected to Forced Flow: A Critical Review. Int. J. Heat Mass Transf. 2019, 130, 141–161. [Google Scholar] [CrossRef]
- Soleymani, Z.; Rahimi, M.; Gorzin, M.; Pahamli, Y. Performance Analysis of Hotspot Using Geometrical and Operational Parameters of a Microchannel Pin-Fin Hybrid Heat Sink. Int. J. Heat Mass Transf. 2020, 159, 120141. [Google Scholar] [CrossRef]
- Kewalramani, G.V.; Hedau, G.; Saha, S.K.; Agrawal, A. Empirical Correlation of Laminar Forced Convective Flow in Trapezoidal Microchannel Based on Experimental and 3D Numerical Study. Int. J. Therm. Sci. 2019, 142, 422–433. [Google Scholar] [CrossRef]
- Ghosh, A.; Biswas, S.; Turner, T.; Kietzig, A.-M.; Brochu, M. Surface, Microstructure, and Tensile Deformation Characterization of LPBF SS316L Microstruts Micromachined with Femtosecond Laser. Mater. Des. 2021, 210, 110045. [Google Scholar] [CrossRef]
- Li, Q.; Jiang, J.; Hong, Y.; Du, J. Numerical Investigation of Thermal Management Performances in a Solar Photovoltaic System by Using the Phase Change Material Coupled with Bifurcated Fractal Fins. J. Energy Storage 2022, 56, 106156. [Google Scholar] [CrossRef]
- Unnikrishnan, U.; Yang, V. A Review of Cooling Technologies for High Temperature Rotating Components in Gas Turbine. Propuls. Power Res. 2022, 11, 293–310. [Google Scholar] [CrossRef]
- Shahzad, F.; Jamshed, W.; Safdar, R.; Hussain, S.M.; Nasir, N.A.A.M.; Dhange, M.; Nisar, K.S.; Eid, M.R.; Sohail, M.; Alsehli, M.; et al. Thermal Analysis Characterisation of Solar-Powered Ship Using Oldroyd Hybrid Nanofluids in Parabolic Trough Solar Collector: An Optimal Thermal Application. Nanotechnol. Rev. 2022, 11, 2015–2037. [Google Scholar] [CrossRef]
- Hussain, S.M. Dynamics of Radiative Williamson Hybrid Nanofluid with Entropy Generation: Significance in Solar Aircraft. Sci. Rep. 2022, 12, 8916. [Google Scholar] [CrossRef]
- Hussain, S.M. Thermal-Enhanced Hybrid of Copper–Zirconium Dioxide/Ethylene Glycol Nanofluid Flowing in the Solar Collector of Water-Pump Application. Waves Random Complex Media 2022, 0, 1–28. [Google Scholar] [CrossRef]
- Lee, Y.J.; Singh, P.K.; Lee, P.S. Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins with Parametric Study. Int. J. Heat Mass Transf. 2015, 81, 325–336. [Google Scholar] [CrossRef]
- Tuckerman High-Performance Heat-Sinking for VLSI. IEEE Electr Device 1981.
- Tao, W.Q.; He, Y.L.; Wang, Q.W.; Qu, Z.G.; Song, F.Q. A Unified Analysis on Enhancing Single Phase Convective Heat Transfer with Field Synergy Principle. Int. J. Heat Mass Transf. 2002, 45, 4871–4879. [Google Scholar] [CrossRef]
- İzci, T.; Koz, M.; Koşar, A. The Effect of Micro Pin-Fin Shape on Thermal and Hydraulic Performance of Micro Pin-Fin Heat Sinks. Heat Transf. Eng. 2015, 36, 1447–1457. [Google Scholar] [CrossRef]
- Abdoli, A.; Jimenez, G.; Dulikravich, G.S. Thermo-Fluid Analysis of Micro Pin-Fin Array Cooling Configurations for High Heat Fluxes with a Hot Spot. Int. J. Therm. Sci. 2015, 90, 290–297. [Google Scholar] [CrossRef]
- Guo, D.; Gao, J.; Santhanam, S.; Yao, S.C. Experimental Investigation of Laminar Flow across Short Micro Pin Fin Arrays. J. Micromechanics Microengineering 2014, 24, 095011. [Google Scholar] [CrossRef]
- Wang, H.; Fu, T.; Wang, J.; Zhang, F.; Zhang, K.; Deng, X. Study on Heat Transfer Performance of Fin-and-Tube Heat Exchanger with Elliptical Fins. J. Energy Storage 2022, 56, 105956. [Google Scholar] [CrossRef]
- Limbasiya, N.; Roy, A.; Harichandan, A.B. Numerical Simulation of Heat Transfer for Microelectronic Heat Sinks with Different Fin Geometries in Tandem and Staggered Arrangements. Therm. Sci. Eng. Prog. 2017, 4, 11–17. [Google Scholar] [CrossRef]
- kang, ning; wu, huiying; xu, fayao Flow and heat transfer characteristics in Silicon-Based Pin-Fin Microchannels. J. Eng. Thermophys. 2015, 36, 1572–1577.
- Jia, Y.; Xia, G.; Li, Y.; Ma, D.; Cai, B. Heat Transfer and Fluid Flow Characteristics of Combined Microchannel with Cone-Shaped Micro Pin Fins. Int. Commun. Heat Mass Transf. 2018, 92, 78–89. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Huang, B.; Xu, T. Numerical Investigation on the Optimum Thermal Design of the Shape and Geometric Parameters of Microchannel Heat Exchangers with Cavities. Micromachines 2020, 11, 721. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Li, H.; Xu, T. Experimental Investigation of the Flow and Heat Transfer Characteristics in Microchannel Heat Exchangers with Reentrant Cavities. Micromachines 2020, 11, 403. [Google Scholar] [CrossRef] [Green Version]
- Huang, B.; Li, H.; Xia, S.; Xu, T. Experimental Investigation of the Flow and Heat Transfer Performance in Micro-Channel Heat Exchangers with Cavities. Int. J. Heat Mass Transf. 2020, 159, 120075. [Google Scholar] [CrossRef]
- Zhu, L.; Awais, M.; Javed, H.M.A.; Mustafa, M.S.; Tlili, I.; Khan, S.U.; Safdari Shadloo, M. Photo-Catalytic Pretreatment of Biomass for Anaerobic Digestion Using Visible Light and Nickle Oxide (NiOx) Nanoparticles Prepared by Sol Gel Method. Renew. Energy 2020, 154, 128–135. [Google Scholar] [CrossRef]
- Parvin, S.; Isa, S.S.P.M.; Duais, F.S.A.-; Hussain, S.M.; Jamshed, W.; Safdar, R.; Eid, M.R. The Flow, Thermal and Mass Properties of Soret-Dufour Model of Magnetized Maxwell Nanofluid Flow over a Shrinkage Inclined Surface. PLOS ONE 2022, 17, e0267148. [Google Scholar] [CrossRef]
- Hussain, S.M. Irreversibility Analysis of Time-Dependent Magnetically Driven Flow of Sutterby Hybrid Nanofluid: A Thermal Mathematical Model. Waves Random Complex Media 2022, 0, 1–33. [Google Scholar] [CrossRef]
- Sajid, T.; Jamshed, W.; Safdar, R.; Hussain, S.M.; Shahzad, F.; Bilal, M.; Rehman, Z.; Rahman, M.M.; Pasha, A.A. Features and Aspects of Radioactive Flow and Slippage Velocity on Rotating Two-Phase Prandtl Nanofluid with Zero Mass Fluxing and Convective Constraints. Int. Commun. Heat Mass Transf. 2022, 136, 106180. [Google Scholar] [CrossRef]
- Madhu, M.; Mahanthesh, B.; Shashikumar, N.S.; Shehzad, S.A.; Khan, S.U.; Gireesha, B.J. Performance of Second Law in Carreau Fluid Flow by an Inclined Microchannel with Radiative Heated Convective Condition. Int. Commun. Heat Mass Transf. 2020, 117, 104761. [Google Scholar] [CrossRef]
- Batchelor, C.K.; Batchelor, G.K. An Introduction to Fluid Dynamics, 1st ed.; Cambridge University Press: Cambridge, UK, 1967. [Google Scholar]
- Xu, B.; Ooti, K.T.; Wong, N.T.; Choi, W.K. Experimental Investigation of Flow Friction for Liquid Flow in Microchannels. Int. Commun. Heat Mass Transf. 2000, 27, 1165–1176. [Google Scholar] [CrossRef]
- Rapp, B.E. Microfluidics: Modeling, Mechanics and Mathematics. In Microfluidics: Modelling, Mechanics and Mathematics; Rapp, B.E., Ed.; Micro and Nano Technologies; Elsevier: Oxford, UK, 2017; p. xxxi. ISBN 978-1-4557-3141-1. [Google Scholar]
- Judy, J.; Maynes, D.; Webb, B.W. Characterization of Frictional Pressure Drop for Liquid Flows through Microchannels. Int. J. Heat Mass Transf. 2002, 45, 3477–3489. [Google Scholar] [CrossRef]
- Qu, W.; Mudawar, I. Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink. Int. J. Heat Mass Transf. 2002, 45, 2549–2565. [Google Scholar] [CrossRef]
- Alfellag, M.A.; Ahmed, H.E.; Fadhil, O.T.; Kherbeet, A.S. Optimal Hydrothermal Design of Microchannel Heat Sink Using Trapezoidal Cavities and Solid/Slotted Oval Pins. Appl. Therm. Eng. 2019, 158, 113765. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, S.; Ma, Q. The Calculation of Heat Transfer in Duct Flow by Unstructured Grids. J. Nanjing Inst. Technol. Nat. Sci. Ed. 2006, 4, 25. [Google Scholar] [CrossRef]
ls | lf | lh | α | m | n | |
---|---|---|---|---|---|---|
#1 | - | - | - | - | - | - |
#2 | 0.5 mm | 0.12 mm | 0.04 mm | 90° | 3 | 3 |
#3 | 0.5 mm | 0.12 mm | 0.06 mm | 90° | 2 | 3 |
#4 | 0.5 mm | 0.12 mm | 0.08 mm | 90° | 1.5 | 3 |
#5 | 0.5 mm | 0.12 mm | 0.06 mm | 45° | 2 | 3 |
#6 | 0.5 mm | 0.12 mm | 0.06 mm | 26° | 2 | 3 |
#7 | 0.5 mm | 0.12 mm | 0.06 mm | 90° | 2 | 5 |
#8 | 0.5 mm | 0.12 mm | 0.06 mm | 90° | 2 | ∞ |
Parameter | Symbol | Value | |
---|---|---|---|
Deionized water | Density | ρf | 998.2 kg/m3 |
Dynamic viscosity | μf | 0.001003 kg/(m·s) | |
Specific heat | Cpf | 4182 J/(kg·K) | |
Thermal conductivities | λf | 0.6 W/(m·K) | |
Silicon | Thermal conductivities | λs | 18.5 W/(m·K) |
No. | Number of Grids | Nu | e (Nu) | Po | e (Po) |
---|---|---|---|---|---|
1 | 3,156,796 | 3.224011 | 0.50% | 91.92736 | 1.63% |
2 | 5,751,424 | 3.212655 | 0.14% | 92.44489 | 1.08% |
3 | 10,698,168 | 3.207688 | 0.01% | 92.87407 | 0.62% |
4 | 18,773,490 | 3.207616 | 0.01% | 93.17941 | 0.29% |
5 | 33,945,090 | 3.207572 | 0.01% | 93.33882 | 0.12% |
6 | 58,475,088 | 3.208021 | - | 93.45025 | - |
Re | Po | Deviation Value |
---|---|---|
25 | 56.7555 | 0.254% |
50 | 56.7555 | 0.254% |
100 | 56.75547 | 0.254% |
150 | 56.75547 | 0.254% |
200 | 56.75884 | 0.248% |
250 | 56.75545 | 0.254% |
300 | 56.75545 | 0.254% |
400 | 56.75382 | 0.257% |
500 | 56.75571 | 0.254% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Gao, X.; Li, H.; Sang, J.; Nie, P.; Fang, W.; Xu, T. Investigation of Flow and Heat Transfer Characteristics in Microchannels with Fins. Machines 2023, 11, 154. https://doi.org/10.3390/machines11020154
Li M, Gao X, Li H, Sang J, Nie P, Fang W, Xu T. Investigation of Flow and Heat Transfer Characteristics in Microchannels with Fins. Machines. 2023; 11(2):154. https://doi.org/10.3390/machines11020154
Chicago/Turabian StyleLi, Murun, Xuan Gao, Haiwang Li, Jichang Sang, Pengpeng Nie, Weidong Fang, and Tiantong Xu. 2023. "Investigation of Flow and Heat Transfer Characteristics in Microchannels with Fins" Machines 11, no. 2: 154. https://doi.org/10.3390/machines11020154
APA StyleLi, M., Gao, X., Li, H., Sang, J., Nie, P., Fang, W., & Xu, T. (2023). Investigation of Flow and Heat Transfer Characteristics in Microchannels with Fins. Machines, 11(2), 154. https://doi.org/10.3390/machines11020154