Design and Implementation of SAE J1939 and Modbus Communication Protocols for Electric Vehicle
Abstract
:1. Introduction
2. E-Vehicle Energy Management and Charging
2.1. Vehicle Energy Management with Power Controlubsection
2.2. Battery Management System
2.2.1. Battery SOC Model
2.2.2. Decision Logic (DL) Module
- Battery isolation during fault conditions
- Responding to vehicle operating mode changes
- Cell balance-offset defects in individual cells
- Responding to shifts in modes of operation of vehicles
- Binary control and progressive control-limiting overload
- Shift the regenerative braking power into the battery as needed
- Discard unnecessary regenerative braking charges with fully powered batteries
2.3. EV Charge Control Unit
2.3.1. Constant Current and Constant Voltage Charging Mode
2.3.2. CC-CV Switching Algorithms
2.3.3. Multi-Step Current Charging Algorithm
2.4. Electronic Control Unit
2.4.1. Analog and Digital Converters with Signal Conditioner
2.4.2. High-Level Digital Output
2.5. Monitoring and System Communications
2.5.1. Monitoring System
2.5.2. Communication System
2.6. Charging Modes and Level
2.6.1. Modes of EV Charging
- Mode 1: Domestic socket with an extension cord and without protection
- Mode 2: Domestic socket with extension cord and protection
- Mode 3: Slow charging devoted socket with protection
- Mode 4: Fast charging devoted socket with protection
2.6.2. Charging Level
3. Charger and Vehicle Communication
3.1. Charging Sequence and Control Communication
3.2. CAN Bus SAEJ1939 Protocol
- The standard CAN messages must contain 8 bytes of data
- The messages containing more than 8 bytes of data should be sent by multi-packet message
3.3. Modbus Communication Protocol
- 0-based reference register to distinct outputs or coils in read or write code
- 1-based reference register reading separates inputs
- 3-based reference register reading input information and
- 4-based reference register is to read or write the data to output or store them
4. Implementation of EV Charging Communication System
4.1. Charging Communication System Using SAE J1939 CAN Protocol
4.1.1. CAN Shield
4.1.2. Arduino and CAN Communication
4.1.3. Delay Generation Logic
4.1.4. Results and Discussion
4.2. MODBUS Charging Communication System with Arduino Microcontroller
Data Communication
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Details | Register Bit |
---|---|
Carry Flag | Bit 0–C |
Zero Flag | Bit 1–Z |
Negative Flag | Bit 2–N |
Two’s Complement Overflow Flag | Bit 3–V |
Sign Bit, S = N + V | Bit 4–S |
Half Carry Flag | Bit 5–H |
Bit Copy Storage | Bit 6–T |
Global Interrupt Enable | Bit 7–I |
Field Name | RTU (hex) |
---|---|
Slave Address | 01 |
Function | 10 |
Starting Address Hi | 00 |
Starting Address Lo | 0A |
Quantity of Registers Hi | 00 |
Quantity of Registers Lo | 03 |
Byte Count | 06 |
Data Hi (voltage Hi Byte) | 13 |
Data Lo (voltage Lo Byte) | 88 |
Data Hi (Current Hi Byte) | 00 |
Data Lo (Current Hi Byte) | 0A |
Data Hi (Power Module ON) | 00 |
Data Lo (Power Module ON) | 01 |
Error Check Lo | C5 |
Error Check Hi | DE |
Field Name | RTU (hex) |
---|---|
Slave Address | 01 |
Function | 10 |
Starting Address Hi | 00 |
Starting Address Lo | 0A |
Quantity of Registers Hi | 00 |
Quantity of Registers Lo | 03 |
Error Check Lo | A0 |
Error Check Hi | 0A |
Field Name | RTU (hex) |
---|---|
Slave Address | 01 |
Function | 03 |
Starting Address Hi | 00 |
Starting Address Lo | 0A |
Quantity of Registers Hi | 00 |
Quantity of Registers Lo | 03 |
Error Check Lo | 25 |
Error Check Hi | C9 |
Field Name | RTU (hex) |
---|---|
Slave Address | 01 |
Function | 03 |
Byte Count | 06 |
Data Hi (voltage Hi Byte) | 13 |
Data Lo (voltage Lo Byte) | 88 |
Data Hi (Current Hi Byte) | 00 |
Data Lo (Current Hi Byte) | 0A |
Data Hi (Power Module ON) | 00 |
Data Lo (Power Module ON) | 01 |
Error Check Lo | 22 |
Error Check Hi | 0B |
References
- Yong, J.K.; Ramachandaramurthy, V.K.; Tan, K.M.; Mithulananthan, N. A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects. Renew. Sustain. Energy Rev. 2015, 49, 365–385. [Google Scholar] [CrossRef]
- Rupp, M.; Handschuh, N.; Rieke, C.; Kuperjans, I. Contribution of country-specific electricity mix and charging time to environmental impact of battery electric vehicles: A case study of electric buses in Germany. Appl. Energy 2019, 237, 618–634. [Google Scholar] [CrossRef]
- Ahmadi, P. Environmental impacts and behavioral drivers of deep decarbonization for transportation through electric vehicles. J. Clean. Prod. 2019, 225, 1209–1219. [Google Scholar] [CrossRef]
- Chandran, V.; Patil, C.K.; Karthick, A.; Ganeshaperumal, D.; Rahim, R.; Ghosh, A. State of Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Machine Learning Algorithms. World Electr. Veh. J. 2021, 12, 38. [Google Scholar] [CrossRef]
- Capasso, C.; Veneri, O. Experimental study of a DC charging station for full electric and plug in hybrid vehicles. Appl. Energy 2015, 152, 131–142. [Google Scholar] [CrossRef]
- Nienhueser, I.A.; Qiu, Y. Economic and environmental impacts of providing renewable energy for electric vehicle charging–A choice experiment study. Appl. Energy 2016, 180, 256–268. [Google Scholar] [CrossRef]
- Banerji, A.; Sharma, K.; Singh, R.R. Integrating Renewable Energy and Electric Vehicle Systems into Power Grid: Benefits and Challenges. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Z.; Liu, P.; Zhang, Z. Energy consumption analysis and prediction of electric vehicles based on real-world driving data. Appl. Energy 2020, 275, 115408. [Google Scholar] [CrossRef]
- Kettles, D. Electric Vehicle Charging Technology Analysis and Standards. Appl. Energy 2016, 139, 60–67. [Google Scholar] [CrossRef]
- Quinn, C.; Zimmerle, D.; Bradley, T.H. The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services. J. Power Sources 2010, 195, 1500–1509. [Google Scholar] [CrossRef]
- Scholer, R.A.; Maitra, A.; Ornelas, E.; Bourton, M.; Salazar, J. Communication between Plug-in Vehicles and the Utility Grid. In Proceedings of the SAE 2010 World Congress & Exhibition, Detroit, MI, USA, 12–15 April 2010; pp. 1–36. [Google Scholar] [CrossRef]
- Energy Transfer System for Electric Vehicles—Part 1: Functional Requirements and System Architectures. In Proceedings of the SAE International Surface Vehicle Information Report 2008 World Congress & Exhibition, Detroit, MI, USA, 7 July 2008; pp. 1–11. [CrossRef]
- Use Cases for Communication Between Plug-in Vehicles and the Utility Grid. In Proceedings of the SAE International Surface Vehicle Information Report 2010 World Congress & Exhibition, Detroit, MI, USA, 13–15 April 2010; p. 244. [CrossRef]
- Communication between Plug-In Vehicles and Off-Board DC Chargers. In Proceedings of the SAE International Surface Vehicle Standard 2015 World Congress & Exhibition, Detroit, MI, USA, 9 April 2015; pp. 1–177. [CrossRef]
- Use Cases for Communication between Plug-in Vehicles and Off-Board DC Charger. In Proceedings of the SAE International Surface Vehicle Information Report 2011 World Congress & Exhibition, Detroit, MI, USA, 15 September 2011; pp. 1–19. [CrossRef]
- Use Cases for Plug-in Vehicle Communication as a Distributed Energy Resource. In Proceedings of the SAE International Surface Vehicle Information Report 2013 World Congress & Exhibition, Detroit, MI, USA, 3 January 2013; pp. 1–130. [CrossRef]
- Communication for Plug-in Vehicles as a Distributed Energy Resource. In Proceedings of the SAE International Surface Vehicle Information Report 2013 World Congress & Exhibition, Detroit, MI, USA, 10 December 2013; pp. 1–93. [CrossRef]
- Digital Communications for Plug-in Electric Vehicles. In Proceedings of the SAE International Surface Vehicle Information Report 2010 World Congress & Exhibition, Detroit, MI, USA, 24 January 2012; pp. 1–33. [CrossRef]
- Recommended Practice for a Serial Control and Communications Vehicle Network. In Proceedings of the SAE International Surface Vehicle Information Report 2010 World Congress & Exhibition, Detroit, MI, USA, 9 October 2007. [CrossRef]
- Tie, S.F.; Tan, C.W. A review of energy sources and energy management system in electric vehicles. Renew. Sustain. Energy Rev. 2013, 20, 82–102. [Google Scholar] [CrossRef]
- Un-Noor, F.; Padmanaban, S.; Mihet-Popa, L.; Mollah, M.N.; Hossain, E. A comprehensive study of key electric vehicle (EV) components, technologies, challenges, impacts, and future direction of development. Energies 2017, 10, 1217. [Google Scholar] [CrossRef]
- Li, S.; Bao, K.; Fu, X.; Zheng, H. Energy management and control of electric vehicle charging stations. Electr. Power Compon. Syst. 2014, 42, 339–347. [Google Scholar] [CrossRef]
- Bayindir, K.Ç.; Gözüküçük, M.A.; Teke, A. A comprehensive overview of HEV: Powertrain configurations, powertrain control techniques and electronic control units. Energy Convers. Manag. 2011, 52, 1305–1313. [Google Scholar] [CrossRef]
- Cheng, K.W.E.; Divakar, B.P.; Wu, H.; Ding, K.; Ho, H.F. Battery-management system (BMS) and SOC development for electrical vehicles. IEEE Trans. Veh. Technol. 2010, 60, 76–88. [Google Scholar] [CrossRef]
- Frost, D.F.; Howey, D.A. Completely decentralized active balancing battery management system. IEEE Trans. Power Electron. 2017, 33, 729–738. [Google Scholar] [CrossRef]
- Li, S.G.; Sharkh, S.M.; Walsh, F.C.; Zhang, C.N. Energy and battery management of a plug-in series hybrid electric vehicle using fuzzy logic. IEEE Trans. Veh. Technol. 2011, 60, 3571–3585. [Google Scholar] [CrossRef]
- Amjadi, Z.; Williamson, S.S. Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems. IEEE Trans. Ind. Electron. 2009, 57, 608–616. [Google Scholar] [CrossRef]
- Qu, X.; Han, H.; Wong, S.C.; Tse, C.K.; Chen, W. Hybrid IPT Topologies with Constant Current or Constant Voltage Output for Battery Charging Applications. IEEE Trans. Power Electron. 2015, 30, 6329–6337. [Google Scholar] [CrossRef]
- Shen, W.; Vo, T.T.; Kapoor, A. Charging algorithms of lithium-ion batteries: An overview. In Proceedings of the 2012 7th IEEE Conference on Industrial Electronics and Application, Singapore, 18–20 July 2012. [Google Scholar] [CrossRef]
- Ribbens, W.B. Chapter 9–Vehicle Communications. In Understanding Automotive Electronics, 8th ed.; Ribbens, W.B., Ed.; Butterworth-Heinemann: Oxford, UK, 2017; pp. 461–504. [Google Scholar]
- Affanni, A.; Bellini, A.; Franceschini, G.; Guglielmi, P.; Tassoni, C. Battery choice and management for new-generation electric vehicles. IEEE Trans. Ind. Electron. 2005, 52, 1343–1349. [Google Scholar] [CrossRef] [Green Version]
- Van Den Bossche, P. Electric vehicle charging infrastructure. In Electric and Hybrid Vehicles; Elsevier: Amsterdam, The Netherlands, 2010. [Google Scholar]
- Rahman, I.; Vasant, P.M.; Singh, B.S.M.; Abdullah-Al-Wadud, M.; Adnan, N. Review of recent trends in optimization techniques for plug-in hybrid, and electric vehicle charging infrastructures. Renew. Sustain. Energy Rev. 2016, 58, 1039–1047. [Google Scholar] [CrossRef]
- Zhou, Q.; Xu, Y.; Rasol, J.; Hui, T.; Yuan, C.; Li, F. Reliable Design and Control Implementation of Parallel DC/DC Converter for High Power Charging System. Machines. 2022, 10, 1162. [Google Scholar] [CrossRef]
- Franke, T.; Krems, J.F. Understanding charging behaviour of electric vehicle users. Transp. Res. Part F Traffic Psychol. Behav. 2013, 21, 75–89. [Google Scholar] [CrossRef]
- Landman, R.G. Design and analysis of CAN networks for vehicles. SAE Trans. 2000, 192–198. [Google Scholar] [CrossRef]
- Ran, L.; Junfeng, W.; Haiying, W.; Gechen, L. Design method of CAN BUS network communication structure for electric vehicle. In Proceedings of the International Forum on Strategic Technology 2010, Ulsan, Korea, 13–15 October 2010; pp. 326–329. [Google Scholar] [CrossRef]
- Sato, K.; Koita, T.; McCormick, S. Design and implementation of a vehicle interface protocol using an IEEE 1394 network. J. Syst. Archit. 2008, 54, 901–910. [Google Scholar] [CrossRef]
- Xuehua, S.; Min, L.; Hesheng, W.; Hong, W.; Fei, L. The solution of hybrid electric vehicle information system by modbus protocol. In Proceedings of the 2011 International Conference on Electric Information and Control Engineering, Wuhan, China, 15–17 April 2011. [Google Scholar] [CrossRef]
- Fovino, I.N.; Carcano, A.; Masera, M.; Trom-Betta, A. Design and Implementation of a Secure Modbus Protocol; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar] [CrossRef] [Green Version]
- Belliardi, R.; Neubert, R. Modbus protocol. In Industrial Communication Technology Handbook, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Li, Z.L.; Liu, P.; Li, W. A multibyte data communication method based on MCP2515 CAN controller. Xi’an Shiyou Daxue Xuebao (Ziran Kexue Ban)/J. Xi’an Shiyou Univ. Nat. Sci. Ed. 2014, 5, 1. [Google Scholar]
- Microchip Technology, MCP2515–Stand-alone CAN Controller with SPI Interface (Datasheet). Datasheet, 2012. Available online: https://www.microchip.com/en-us/search?searchQuery=MCP2515&category=Product%20Documents|Data%20Sheets&fq=start%3D0%26rows%3D10 (accessed on 28 November 2022).
- Maxim Integrated, MAX485 TTL to RS485 Converter Modul e. Available online: https://www.techtonics.in/max485-ttl-to-rs485-converter-module (accessed on 21 April 2022).
Parameter | Description |
---|---|
Wire | Shielded twisted pair wire |
Network length | 40 m |
Standard baud rate | 250 kbit/s |
ECUs | Maximum of 30 nodes |
Controller Applications | Maximum of 253 |
Message lengths | 1785 bytes |
Additional Supports | Peer-to-Peer and broadcast communication, better data bandwidth, defines parameter group numbers, network administration with node IDs and an address requesting process. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alzahrani, A.; Wangikar, S.M.; Indragandhi, V.; Singh, R.R.; Subramaniyaswamy, V. Design and Implementation of SAE J1939 and Modbus Communication Protocols for Electric Vehicle. Machines 2023, 11, 201. https://doi.org/10.3390/machines11020201
Alzahrani A, Wangikar SM, Indragandhi V, Singh RR, Subramaniyaswamy V. Design and Implementation of SAE J1939 and Modbus Communication Protocols for Electric Vehicle. Machines. 2023; 11(2):201. https://doi.org/10.3390/machines11020201
Chicago/Turabian StyleAlzahrani, Ahmad, Shriya Makarand Wangikar, Vairavasundaram Indragandhi, Rassaiah Raja Singh, and Vairavasundaram Subramaniyaswamy. 2023. "Design and Implementation of SAE J1939 and Modbus Communication Protocols for Electric Vehicle" Machines 11, no. 2: 201. https://doi.org/10.3390/machines11020201
APA StyleAlzahrani, A., Wangikar, S. M., Indragandhi, V., Singh, R. R., & Subramaniyaswamy, V. (2023). Design and Implementation of SAE J1939 and Modbus Communication Protocols for Electric Vehicle. Machines, 11(2), 201. https://doi.org/10.3390/machines11020201