Two-Dimensional Analytical Models for Cogging Torque Prediction in Interior Permanent Magnet Machine
Abstract
:1. Introduction
2. Existing Analytical Model for IPM Machine
2.1. Basic Magnetic Circuit Model
2.2. One-Dimensional (1D) Model
2.2.1. Slotless Radial Air-Gap Flux Density
2.2.2. Relative Permeance Function
2.2.3. Summary
3. Proposed Method of IPM Cogging Torque Analytical Prediction
3.1. Slotless Radial Air-Gap Flux Density Function Based on the 2D Model
3.2. Relative Permeance Function Based on the 2D Model
3.3. Slotted Radial Air-Gap Flux Density
3.4. Analytical Model of the IPM Cogging Torque
3.5. Summary of the Proposed Analytical Model of IPM Cogging Torque
4. Validation of the Proposed 2D Models for IPM
4.1. Cogging Torque Patterns Predictions Compared with FEA
4.2. IPM Cogging Torque Optimization Process Using the Proposed 2D Models (Pole-Arc Coefficient)
4.3. IPM Cogging Torque Optimization Process Using the Proposed 2D Models (Slot-Opening Coefficient)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dosiek, L.; Pillay, P. Cogging torque reduction in permanent magnet machines. IEEE Trans. Ind. Appl. 2007, 43, 1565–1571. [Google Scholar] [CrossRef]
- Breton, C.; Bartolome, J.; Benito, J.A.; Tassinario, G.; Flotats, I.; Lu, C.W.; Chalmers, B.J. Influence of machine symmetry on reduction of cogging torque in permanent-magnet brushless motors. IEEE Trans. Magn. 2000, 36, 3819–3823. [Google Scholar] [CrossRef]
- Wu, L.J.; Zhu, Z.Q.; Staton, D.A.; Popescu, M.; Hawkins, D. Comparison of analytical models of cogging torque in surface-mounted PM machines. IEEE Trans. Ind. Electron. 2012, 59, 2414–2425. [Google Scholar] [CrossRef]
- Wang, D.H.; Wang, X.H.; Qiao, D.W.; Pei, Y.; Jung, S.Y. Reducing Cogging Torque in Surface-Mounted Permanent-Magnet Motors by Nonuniformly Distributed Teeth Method. IEEE Trans. Magn. 2011, 47, 2231–2239. [Google Scholar] [CrossRef]
- Hwang, C.C.; John, S.B.; Wu, S.S. Reduction of cogging torque in spindle motors for CD-ROM drive. IEEE Trans. Magn. 1998, 34, 468–470. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Ruangsinchaiwanich, S.; Chen, Y.; Howe, D. Evaluation of superposition technique for calculating cogging torque in permanent-magnet brushless machines. IEEE Trans. Magn. 2006, 42, 1597–1603. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Ruangsinchaiwanich, S.; Schofield, N.; Howe, D. Reduction of cogging torque in interior-magnet brushless machines. IEEE Trans. Magn. 2003, 39, 3238–3240. [Google Scholar] [CrossRef]
- Bianchini, C.; Immovilli, F.; Lorenzani, E.; Bellini, A.; Davoli, M. Review of design solutions for internal permanent-magnet machines cogging torque reduction. IEEE Trans. Magn. 2012, 48, 2685–2693. [Google Scholar] [CrossRef]
- Choi, J.S.; Izui, K.; Nishiwaki, S.; Kawamoto, A.; Nomura, T. Topology optimization of the stator for minimizing cogging torque of IPM motors. IEEE Trans. Magn. 2011, 47, 3024–3027. [Google Scholar] [CrossRef]
- Ko, H.S.; Kim, K.J. Characterization of noise and vibration sources in interior permanent-magnet brushless DC motors. IEEE Trans. Magn. 2004, 40, 3482–3489. [Google Scholar] [CrossRef]
- Islam, R.; Husain, I.; Fardoun, A.; McLaughlin, K. Permanent-magnet synchronous motor magnet designs with skewing for torque ripple and cogging torque reduction. IEEE Trans. Ind. Appl. 2009, 45, 152–160. [Google Scholar] [CrossRef]
- Ishikawa, T.; Slemon, G.R. A method of reducing ripple torque in permanent-magnet motors without skewing. IEEE Trans. Magn. 1993, 29, 2028–2031. [Google Scholar] [CrossRef]
- Hwang, S.M.; Eom, J.B.; Hwang, G.B.; Jeong, W.B.; Jung, Y.H. Cogging torque and acoustic noise reduction in permanent magnet motors by teeth pairing. IEEE Trans. Magn. 2000, 36, 3144–3146. [Google Scholar] [CrossRef]
- Jahns, T.M.; Soong, W.L. Pulsating torque minimization techniques for permanent magnet AC motor drives-A review. IEEE Trans. Ind. Electron. 1996, 43, 321–330. [Google Scholar] [CrossRef]
- Bianchi, N.; Bolognani, S. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl. 2002, 38, 1259–1265. [Google Scholar] [CrossRef]
- Lukaniszyn, M.; Jagiela, M.; Wrobel, R. Optimization of permanent magnet shape for minimum cogging torque using a genetic algorithm. IEEE Trans. Magn. 2004, 40, 1228–1231. [Google Scholar] [CrossRef]
- Arand, S.J.; Ardebili, M. Cogging torque reduction in axial-flux permanent magnet wind generators with yokeless and segmented armature by radially segmented and peripherally shifted magnet pieces. Renew. Energy 2016, 99, 95–106. [Google Scholar] [CrossRef]
- Abbaszadeh, K.; Alam, F.R.; Teshnehlab, M. Slot opening optimization of surface mounted permanent magnet motor for cogging torque reduction. Energy Convers. Manag. 2012, 55, 108–115. [Google Scholar] [CrossRef]
- Liu, T.; Huang, S.D.; Gao, J.; Lu, K.Y. Cogging torque reduction by slot-opening shift for permanent magnet machines. IEEE Trans. Magn. 2013, 49, 4028–4031. [Google Scholar] [CrossRef]
- Koh, C.S.; Seol, J.S. New cogging-torque reduction method for brushless permanent-magnet motors. IEEE Trans. Magn. 2003, 39, 3503–3506. [Google Scholar]
- Kim, T.H.; Won, S.H.; Bong, K.; Lee, J. Reduction of cogging torque in flux-reversal machine by rotor teeth pairing. IEEE Trans. Magn. 2005, 41, 3964–3966. [Google Scholar]
- Zhu, L.; Jiang, S.Z.; Zhu, Z.Q.; Chan, C.C. Analytical modeling of open-circuit air-gap field distributions in multisegment and multilayer interior permanent-magnet machines. IEEE Trans. Magn. 2009, 45, 3121–3130. [Google Scholar] [CrossRef] [Green Version]
- Lovelace, E.C.; Jahns, T.M.; Lang, J.H. A saturating lumped-parameter model for an interior PM synchronous machine. IEEE Trans. Ind. Appl. 2002, 38, 645–650. [Google Scholar] [CrossRef]
- Mi, C.T.; Filippa, M.; Liu, W.G.; Ma, R.Q. Analytical method for predicting the air-gap flux of interior-type permanent-magnet machines. IEEE Trans. Magn. 2004, 40, 50–58. [Google Scholar] [CrossRef]
- Qu, R.H.; Lipo, T.A. Analysis and modeling of air-gap and zigzag leakage fluxes in a surface-mounted permanent-magnet machine. IEEE Trans. Ind. Appl. 2004, 40, 121–127. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D.; Chan, C.C. Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines. IEEE Trans. Magn. 2002, 38, 229–238. [Google Scholar] [CrossRef]
- Rahideh, A.; Korakianitis, T. Analytical calculation of open-circuit magnetic field distribution of slotless brushless PM machines. Int. J. Electr. Power 2013, 44, 99–114. [Google Scholar] [CrossRef]
- Kim, U.; Lieu, D.K. Magnetic field calculation in permanent magnet motors with rotor eccentricity: With slotting effect considered. IEEE Trans. Magn. 1998, 34, 2253–2266. [Google Scholar] [CrossRef]
- Proca, A.B.; Keyhani, A.; El-Antably, A.; Lu, W.Z.; Dai, M. Analytical model for permanent magnet motors with surface mounted magnets. IEEE Trans. Energy Convers. 2003, 18, 386–391. [Google Scholar] [CrossRef]
- Wang, X.; Li, Q.; Wang, S.; Li, Q. Analytical calculation of air-gap magnetic field distribution and instantaneous characteristics of brushless DC motors. IEEE Trans. Energy Convers. 2003, 18, 424–432. [Google Scholar] [CrossRef]
- Zhu, Z.Q.; Howe, D. Instantaneous magnetic-field distribution in brushless permanent-magnet dc motors, part III: Effect of Stator Slotting. IEEE Trans. Magn. 1993, 29, 143–151. [Google Scholar] [CrossRef]
- Seo, J.H.; Choi, H.S. Cogging torque calculation for IPM having single layer based on magnetic circuit model. IEEE Trans. Magn. 2014, 50, 1–4. [Google Scholar] [CrossRef]
- Tsai, W.B.; Chang, T.Y. Analysis of flux leakage in a brushless permanent-magnet motor with embedded magnets. IEEE Trans. Magn. 1999, 35, 543–547. [Google Scholar] [CrossRef]
- Hwang, C.C.; Cho, Y.H. Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors. IEEE Trans. Magn. 2001, 37, 3021–3024. [Google Scholar] [CrossRef]
- Drabek, T.; Matras, A.; Skwarczynski, J. An analytical model of an electrical machine with internal permanent magnets. In Lecture Notes in Electrical Engineering; Gołębiowski, L., Mazur, D., Eds.; Springer: Berlin, Germany, 2015; Volume 324, pp. 215–239. [Google Scholar]
- Drabek, T.; Skwarczynski, J. An analytical model of an electrical machine with internal permanent magnets. Part. II, The work of electric generator under an unbalanced load: Simulations and measurement verification. In Lecture Notes in Electrical Engineering; Mazur, D., Gołębiowski, M., Korkosz, M., Eds.; Springer: Berlin, Germany, 2018; Volume 452, pp. 87–109. [Google Scholar]
Symbol | Quantity | Value |
---|---|---|
Number of pole-pair | 4 | |
Number of slots | 12/36/48 | |
Outer diameter of stator | 269.24 mm | |
Inner diameter of stator | 161.9 mm | |
Outer diameter of rotor | 160.4 mm | |
Inner diameter of rotor | 110.64 mm | |
Machine active length | 83.82 mm | |
Air gap length | 0.75 mm | |
Magnet width | 16 mm | |
Magnet thickness | 6.48 mm | |
Pole-arc coefficient | 0.63 | |
Slot-opening coefficient | 0.18 | |
Magnet remanence | 1.191 T | |
Magnet relative permeability | 1.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Lu, S.; Chen, Y. Two-Dimensional Analytical Models for Cogging Torque Prediction in Interior Permanent Magnet Machine. Machines 2023, 11, 233. https://doi.org/10.3390/machines11020233
Wang L, Lu S, Chen Y. Two-Dimensional Analytical Models for Cogging Torque Prediction in Interior Permanent Magnet Machine. Machines. 2023; 11(2):233. https://doi.org/10.3390/machines11020233
Chicago/Turabian StyleWang, Linwei, Shuai Lu, and Yangming Chen. 2023. "Two-Dimensional Analytical Models for Cogging Torque Prediction in Interior Permanent Magnet Machine" Machines 11, no. 2: 233. https://doi.org/10.3390/machines11020233
APA StyleWang, L., Lu, S., & Chen, Y. (2023). Two-Dimensional Analytical Models for Cogging Torque Prediction in Interior Permanent Magnet Machine. Machines, 11(2), 233. https://doi.org/10.3390/machines11020233