Application of Transient Analysis Techniques to Fault Diagnosis in Low- and Medium-Power Synchronous Machines
Abstract
:1. Introduction
2. Fault Detection
2.1. Stator Winding Short Circuits
2.2. Demagnetization Faults
2.3. Bearing Faults
2.4. Eccentricity Faults
2.5. Unbalance Faults
2.6. Misalignment Faults
3. Case Studies
3.1. Short-Time Fourier Transform (STFT)
3.2. Eccentricity in PMSM
3.3. Misalignment in SynRM
4. Conclusions
- -
- A significant number of faults can be studied in SynRMs since, as discussed above, studies on these machines regarding condition monitoring have been quite scarce. In particular, transient analysis suitability can be investigated, since it has shown an excellent performance for other machines (such as induction motors or even PMSMs). The results included in this work also prove the potential of transient analysis for determining the condition of SynRMs.
- -
- There is a need to deepen the development of fault severity indicators that are suitable both for PMSMs and SynRMs; unlike what happens in induction motors, where reliable fault indicators have been well established for some faults, and are used in the field, there are no reliable indicators for determining fault severity in PMSMs or SynRMs, which is a drawback when trying to apply new methodologies in the field.
- -
- Extension of the newly developed methods to PMASynRMs is an immediate step forward, after the development of new methods in PMSMs and SynRMs, since these machines combine the main features of both machine typologies.
- -
- Combination of the application of transient analysis methods not only to currents but also to other quantities such as stray fluxes is essential. This combination has proven to be helpful in discriminating between different faults (e.g., eccentricities and misalignments) in other types of machines (e.g., induction machines) and it would be of great value to analyze its suitability for fault discrimination in PMSMs and SynRMs.
Author Contributions
Funding
Conflicts of Interest
Abbreviations
BS | Bispectrum |
CWT | Continuous Wavelet transform |
DWT | Discrete Wavelet transform |
EPVA | Extended Park vector analysis |
GST | Grey system theory |
HHT | Hilbert–Huang transform |
ITSC | Inter-turn short-circuit |
FFT | Fast Fourier transform |
FS | Full spectrum |
MCSA | Motor current signature analysis |
MUSIC | Multiple signal classification |
OA | Order analysis |
PCA | Principal component analysis |
PMASynRM | Permanent magnet assisted synchronous reluctance machine |
PMSM | Permanent magnet synchronous machine |
PSD | Power spectrum density |
RMS | Root mean square |
STFT | Short-time Fourier transform |
SynRM | Synchronous reluctance machine |
TDE | Time delay embedding |
UMB | Unbalance magnetic pull |
VFD | Variable-frequency drive |
VKT-OT | Vold-Kalman filtering order tracking |
VPT | Virtual phase torque |
WVD | Wigner-Ville distribution |
ZCP | Zero crossing point |
ZFFT | Zoom FFT |
ZSCC | Zero-sequence current component |
ZSMC | Zero-sequence magnetic flux density component |
ZSVC | Zero-sequence voltage component |
References
- Mecrow, B.C.; Jack, A.G. Efficiency trends in electric machines and drives. Energy Policy 2008, 36, 4336–4341. [Google Scholar] [CrossRef]
- Tsao, J.Y.; Schubert, E.F.; Fouquet, R.; Lave, M. The electrification of energy: Long-term trends and opportunities. MRS Energy Sustain. 2018, 5, 1–15. [Google Scholar] [CrossRef]
- Pellegrino, G.; Vagati, A.; Boazzo, B.; Guglielmi, P. Comparison of induction and PM synchronous motor drives for EV application including design examples. IEEE Trans. Ind. Appl. 2012, 48, 2322–2332. [Google Scholar] [CrossRef]
- De Gennaro, M.; Jürgens, J.; Zanon, A.; Gragger, J.; Schlemmer, E.; Fricassè, A.; Marengo, L.; Ponick, B.; Olabarri, E.T.; Kinder, J.; et al. Designing, prototyping and testing of a ferrite permanent magnet assisted synchronous reluctance machine for hybrid and electric vehicles applications. Sustain. Energy Technol. Assess. 2019, 31, 86–101. [Google Scholar] [CrossRef]
- Donaghy-Spargo, C. Synchronous reluctance motor technology: Industrial opportunities, challenges and future direction. Eng. Technol. Ref. 2016, 44, 1–15. [Google Scholar] [CrossRef]
- Lee, S.B.; Stone, G.C.; Antonino-Daviu, J.; Gyftakis, K.N.; Strangas, E.G.; Maussion, P.; Platero, C.A. Condition Monitoring of Industrial Electric Machines: State of the Art and Future Challenges. IEEE Ind. Electron. Mag. 2020, 14, 158–167. [Google Scholar] [CrossRef]
- Shin, S.; Kim, J.; Lee, S.B.; Lim, C.; Wiedenbrug, E.J. Evaluation of the Influence of Rotor Magnetic Anisotropy on Condition Monitoring of Two-Pole Induction Motors. IEEE Trans. Ind. Appl. 2015, 51, 2896–2904. [Google Scholar] [CrossRef]
- Antonino, J.A.; Riera, M.; Roger-Folch, J.; Molina, M.P. Validation of a new method for the diagnosis of rotor bar failures via wavelet transformation in industrial induction machines. In Proceedings of the 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Vienna, Austria, 7–9 September 2005; Volume 42, pp. 990–996. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Osornio-Rios, R.A.; Antonino-Daviu, J.A. Smart Sensor for Fault Detection in Induction Motors Based on the Combined Analysis of Stray-Flux and Current Signals: A Flexible, Robust Approach. IEEE Ind. Appl. Mag. 2022, 28, 56–66. [Google Scholar] [CrossRef]
- Yang, C.; Lee, S.B.; Jang, G.; Kim, S.; Jung, G.; Lee, J.; Shim, S.; Lim, Y.K.; Kim, J.; Park, S. Starting current analysis in medium voltage induction motors: Detecting rotor faults and reactor starting defects. IEEE Ind. Appl. Mag. 2019, 25, 69–79. [Google Scholar] [CrossRef]
- Antonino-Daviu, J. Electrical monitoring under transient conditions: A new paradigm in electric motors predictive maintenance. Appl. Sci. 2020, 10, 6137. [Google Scholar] [CrossRef]
- Climente-Alarcon, V.; Antonino-Daviu, J.A.; Vedreño-Santos, F.; Puche-Panadero, R. Vibration transient detection of broken rotor bars by PSH sidebands. IEEE Trans. Ind. Appl. 2013, 49, 2576–2582. [Google Scholar] [CrossRef]
- Ramirez-Nunez, J.A.; Antonino-Daviu, J.A.; Climente-Alarcon, V.; Quijano-Lopez, A.; Razik, H.; Osornio-Rios, R.A.; Romero-Troncoso, R.D.J. Evaluation of the Detectability of Electromechanical Faults in Induction Motors Via Transient Analysis of the Stray Flux. IEEE Trans. Ind. Appl. 2018, 54, 4324–4332. [Google Scholar] [CrossRef]
- Orlowska-Kowalska, T.; Wolkiewicz, M.; Pietrzak, P.; Skowron, M.; Ewert, P.; Tarchala, G.; Krzysztofiak, M.; Kowalski, C.T. Fault Diagnosis and Fault-Tolerant Control of PMSM Drives-State of the Art and Future Challenges. IEEE Access 2022, 10, 59979–60024. [Google Scholar] [CrossRef]
- Urresty, J.; Riba, J.; Romeral, L.; Saavedra, H. Analysis of demagnetization faults in surface-mounted permanent magnet synchronous with inter-turns and phase-to-ground short-circuits. In Proceedings of the 2012 20th International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 2384–2389. [Google Scholar] [CrossRef]
- Gu, B.G.; Choi, J.H.; Jung, I.S. Development and analysis of interturn short fault model of PMSMs with series and parallel winding connections. IEEE Trans. Power Electron. 2014, 29, 2016–2026. [Google Scholar] [CrossRef]
- Haddad, R.Z.; Strangas, E.G. Fault detection and classification in permanent magnet synchronous machines using Fast Fourier Transform and Linear Discriminant Analysis. In Proceedings of the 2013 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), Valencia, Spain, 7–30 August 2013; pp. 99–104. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J. Feature extraction for short-circuit fault detection in permanent-magnet synchronous motors using stator-current monitoring. IEEE Trans. Power Electron. 2010, 25, 2673–2682. [Google Scholar] [CrossRef]
- Rosero, J.; Garcia, A.; Cusido, J.; Romeral, L.; Ortega, J.A. On the short-circuiting Fault Detection in a PMSM by means of Stator Current Transformations. In Proceedings of the 2007 IEEE Power Electronics Specialists Conference, Orlando, FL, USA, 17–21 June 2007; pp. 1936–1941. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Comparison of selected methods for the stator winding condition monitoring of a pmsm using the stator phase currents. Energies 2021, 14, 1630. [Google Scholar] [CrossRef]
- Romeral, L.; Urresty, J.C.; Riba Ruiz, J.R.; Garcia Espinosa, A. Modeling of surface-mounted permanent magnet synchronous motors with stator winding interturn faults. IEEE Trans. Ind. Electron. 2011, 58, 1576–1585. [Google Scholar] [CrossRef]
- Rosero, J.; Ortega, J.; Urresty, J.; Cárdenas, J.; Romeral, L. Stator Short Circuits Detection in PMSM by means of Higher Order Spectral Analysis (HOSA). In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009; pp. 964–969. [Google Scholar] [CrossRef]
- Fonseca, D.S.B.; Santos, C.M.C.; Cardoso, A.J.M. Stator Faults Modeling and Diagnostics of Line-Start Permanent Magnet Synchronous Motors. IEEE Trans. Ind. Appl. 2020, 56, 2590–2599. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Application of Support Vector Machine to stator winding fault detection and classification of permanent magnet synchronous motor. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021; pp. 880–887. [Google Scholar] [CrossRef]
- Çira, F.; Arkan, M.; Gümüş, B.; Goktas, T. Analysis of stator inter-turn short-circuit fault signatures for inverter-fed permanent magnet synchronous motors. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 1453–1457. [Google Scholar] [CrossRef]
- Cai, B.; Zhao, Y.; Liu, H.; Xie, M. A Data-Driven Fault Diagnosis Methodology in Three-Phase Inverters for PMSM Drive Systems. IEEE Trans. Power Electron. 2017, 32, 5590–5600. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.R.; Saavedra, H.; Romeral, L. Detection of inter-turns short circuits in permanent magnet synchronous motors operating under transient conditions by means of the zero sequence voltage. In Proceedings of the 2011 14th European Conference on Power Electronics and Applications, Birmingham, UK, 30 August–1 September 2011. [Google Scholar]
- Ahn, G.; Lee, J.; Park, C.H.; Youn, M.; Youn, B.D. Inter-turn Short Circuit Fault Detection in Permanent Magnet Synchronous Motors Based on Reference Voltage. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 245–250. [Google Scholar] [CrossRef]
- Krzysztofiak, M.; Skowron, M.; Orlowska-Kowalska, T. Analysis of the impact of stator inter-turn short circuits on pmsm drive with scalar and vector control. Energies 2021, 14, 153. [Google Scholar] [CrossRef]
- Rosero, J.; Cusido, J.; Garcia, A.; Romeral, L.; Ortega, J.A. Detection of stator short circuits in PMSM by mean of joint time-frequency analysis. In Proceedings of the 2007 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cracow, Poland, 6–8 September 2007; pp. 420–425. [Google Scholar] [CrossRef]
- Urresty, J.; Riba, J.; Romeral, L.; Rosero, J.; Serna, J. Stator Short Circuits Detection in PMSM by means of Hilbert-Huang transform and energy calculation. In Proceedings of the 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cargese, France, 31 August–3 September 2009. [Google Scholar] [CrossRef]
- Alvarez-Gonzalez, F.; Griffo, A.; Wang, B. Permanent magnet synchronous machine stator windings fault detection by Hilbert–Huang transform. J. Eng. 2019, 2019, 3505–3509. [Google Scholar] [CrossRef]
- Strangas, E.G.; Aviyente, S.; Zaidi, S.S.H. Time-frequency analysis for efficient fault diagnosis and failure prognosis for interior permanent-magnet AC motors. IEEE Trans. Ind. Electron. 2008, 55, 4191–4199. [Google Scholar] [CrossRef]
- Zanardelli, W.G.; Strangas, E.G.; Aviyente, S. Identification of intermittent electrical and mechanical faults in permanent-magnet AC drives based on time-frequency analysis. IEEE Trans. Ind. Appl. 2007, 43, 971–980. [Google Scholar] [CrossRef]
- Fang, J.; Sun, Y.; Wang, Y.; Wei, B.; Hang, J. Improved ZSVC-based fault detection technique for incipient stage inter-turn fault in PMSM. IET Electr. Power Appl. 2019, 13, 2015–2026. [Google Scholar] [CrossRef]
- Hang, J.; Zhang, J.; Xia, M.; Ding, S.; Hua, W. Interturn Fault Diagnosis for Model-Predictive-Controlled-PMSM Based on Cost Function and Wavelet Transform. IEEE Trans. Power Electron. 2020, 35, 6405–6418. [Google Scholar] [CrossRef]
- Obeid, N.H.; Boileau, T.; Nahid-Mobarakeh, B. Modeling and diagnostic of incipient interturn faults for a three-phase permanent magnet synchronous motor. IEEE Trans. Ind. Appl. 2016, 52, 4426–4434. [Google Scholar] [CrossRef]
- Neti, P.; Nandi, S. Stator Inter-turn Fault Analysis of Reluctance Synchronous Motor. In Proceedings of the Canadian Conference on Electrical and Computer Engineering, Saskatoon, SK, Canada, 1–4 May 2005; pp. 1283–1286. [Google Scholar] [CrossRef]
- Henriques, K.; Laadjal, K.; Cardoso, A.J.M. Inter-Turn Short-Circuit Fault Detection in Synchronous Reluctance Machines, Based on Current Analysis. Eng. Proc. 2022, 24, 23. [Google Scholar] [CrossRef]
- Mahmoudi, A.; Jlassi, I.; Cardoso, A.J.M.; Yahia, K.; Sahraoui, M. Inter-Turn Short-Circuit Faults Diagnosis in Synchronous Reluctance Machines, Using the Luenberger State Observer and Current’s Second-Order Harmonic. IEEE Trans. Ind. Electron. 2021, 69, 8420–8429. [Google Scholar] [CrossRef]
- Candelo-Zuluaga, C.; Riba, J.R.; López-Torres, C.; Garcia, A. Detection of inter-turn faults in multi-phase ferrite-PM assisted synchronous reluctance machines. Energies 2019, 12, 2733. [Google Scholar] [CrossRef] [Green Version]
- Lare, P.; Sarabi, S.; Delpha, C.; Nasr, A.; Diallo, D. Stator winding Inter-turn short-circuit and air gap eccentricity fault detection of a Permanent Magnet-Assisted Synchronous Reluctance Motor in Electrified vehicle. In Proceedings of the 2021 24th International Conference on Electrical Machines and Systems (ICEMS), Gyeongju, Republic of Korea, 31 October–3 November 2021; pp. 932–937. [Google Scholar] [CrossRef]
- Shamsi Nejad, M.A.; Taghipour, M. Inter-turn stator winding fault diagnosis and determination of fault percent in PMSM. In Proceedings of the 2011 IEEE Applied Power Electronics Colloquium (IAPEC), Johor Bahru, Malaysia, 18–19 April 2011; pp. 128–131. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.R.; Romeral, L. Diagnosis of interturn faults in pmsms operating under nonstationary conditions by applying order tracking filtering. IEEE Trans. Power Electron. 2013, 28, 507–515. [Google Scholar] [CrossRef]
- Leboeuf, N.; Boileau, T.; Nahid-Mobarakeh, B.; Clerc, G.; Meibody-Tabar, F. Real-time detection of interturn faults in PM drives using back-EMF estimation and residual analysis. IEEE Trans. Ind. Appl. 2011, 47, 2402–2412. [Google Scholar] [CrossRef]
- Sarikhani, A.; Mohammed, O.A. Inter-turn fault detection in PM synchronous machines by physics-based back electromotive force estimation. IEEE Trans. Ind. Electron. 2013, 60, 3472–3484. [Google Scholar] [CrossRef]
- Guefack, F.L.T.; Kiselev, A.; Kuznietsov, A. Improved Detection of Inter-turn Short Circuit Faults in PMSM Drives using Principal Component Analysis. In Proceedings of the 2018 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Amalfi, Italy, 20–22 June 2018; pp. 154–159. [Google Scholar] [CrossRef]
- Haddad, R.Z.; Strangas, E.G. On the Accuracy of Fault Detection and Separation in Permanent Magnet Synchronous Machines Using MCSA/MVSA and LDA. IEEE Trans. Energy Convers. 2016, 31, 924–934. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.R.; Romeral, L. Influence of the stator windings configuration in the currents and zero-sequence voltage harmonics in permanent magnet synchronous motors with demagnetization faults. IEEE Trans. Magn. 2013, 49, 4885–4893. [Google Scholar] [CrossRef]
- Rosero, J.A.; Cusido, J.; Garcia, A.; Ortega, J.A.; Romeral, L. Study on permanent magnet demagnetization characteristics in permanent magnet synchronous machines. Adv. Mater. Res. 2011, 211–212, 127–131. [Google Scholar] [CrossRef]
- Le Roux, W.; Harley, R.G.; Habetler, T.G. Detecting rotor faults in permanent magnet synchronous machines. In Proceedings of the 4th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2003. SDEMPED 2003, Atlanta, GA, USA, 24–26 August 2003; Volume 22, pp. 198–203. [Google Scholar] [CrossRef]
- Rajagopalan, S.; le Roux, W.; Habetler, T.G.; Harley, R.G. Dynamic eccentricity and demagnetized rotor magnet detection in trapezoidal flux (Brushless DC) motors operating under different load conditions. IEEE Trans. Power Electron. 2007, 22, 2061–2069. [Google Scholar] [CrossRef]
- Faiz, J.; Mazaheri-Tehrani, E. Demagnetization Modeling and Fault Diagnosing Techniques in Permanent Magnet Machines under Stationary and Nonstationary Conditions: An Overview. IEEE Trans. Ind. Appl. 2017, 53, 2772–2785. [Google Scholar] [CrossRef]
- Ding, S.; Hang, J.; Li, H.; Wang, Q. Demagnetisation fault detection in PMSM using zero sequence current components. Electron. Lett. 2017, 53, 148–150. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.R.; Delgado, M.; Romeral, L. Detection of demagnetization faults in surface-mounted permanent magnet synchronous motors by means of the zero-sequence voltage component. IEEE Trans. Energy Convers. 2012, 27, 42–51. [Google Scholar] [CrossRef]
- Mohammed, A.; Melecio, J.I.; Durovic, S. Electrical Machine Permanent Magnets Health Monitoring and Diagnosis Using an Air-Gap Magnetic Sensor. IEEE Sens. J. 2020, 20, 5251–5259. [Google Scholar] [CrossRef]
- Goktas, T.; Zafarani, M.; Lee, K.W.; Akin, B.; Sculley, T. Comprehensive Analysis of Magnet Defect Fault Monitoring Through Leakage Flux. IEEE Trans. Magn. 2017, 53, 8201010. [Google Scholar] [CrossRef]
- Da, Y.; Shi, X.; Krishnamurthy, M. A new approach to fault diagnostics for permanent magnet synchronous machines using electromagnetic signature analysis. IEEE Trans. Power Electron. 2013, 28, 4104–4112. [Google Scholar] [CrossRef]
- Ruschetti, C.R.; Verucchi, C.J.; Bossio, G.R.; García, G.O. AModel For Permanent Magnet Synchronous Machines With Demagnetization Faults. IEEE Lat. Am. Trans. 2013, 11, 414–420. [Google Scholar] [CrossRef]
- Casadei, D.; Filippetti, F.; Rossi, C.; Stefani, A. Magnets Faults Characterization for Permanent Magnet Synchronous Motors. In Proceedings of the 2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Cargese, France, 31 August–3 September 2009; pp. 1–6. [Google Scholar]
- Rosero, J.; Romeral, L.; Cusidó, J.; Ortega, J.A. Fault detection by means of wavelet transform in a PMSM under demagnetization. In Proceedings of the IECON 2007—33rd Annual Conference of the IEEE Industrial Electronics Society, Taipei, Taiwan, 5–8 November 2007; pp. 1149–1154. [Google Scholar] [CrossRef]
- Riba Ruiz, J.R.; Rosero, J.A.; Garcia Espinosa, A.; Romeral, L. Detection of demagnetization faults in permanent-Magnet synchronous motors under nonstationary conditions. IEEE Trans. Magn. 2009, 45, 2961–2969. [Google Scholar] [CrossRef]
- Rosero, J.; Romeral, L.; Ortega, J.A.; Urresty, J.C. Demagnetization fault detection by means of hilbert huang transform of the stator current decomposition in PMSM. In Proceedings of the 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 30 June–2 July 2008; pp. 172–177. [Google Scholar] [CrossRef]
- Espinosa, A.G.; Rosero, J.A.; Cusidó, J.; Romeral, L.; Ortega, J.A. Fault detection by means of Hilbert-Huang transform of the stator current in a PMSM with demagnetization. IEEE Trans. Energy Convers. 2010, 25, 312–318. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Restrepo, J.A.; Aller, J.M.; Habetler, T.G.; Harley, R.G. Detection of Rotor Faults in Brushless DC Motors Operating Under Nonstationary Conditions. IEEE Trans. Ind. Appl. 2006, 42, 1464–1477. [Google Scholar] [CrossRef]
- Gritli, Y.; Rossi, C.; Casadei, D.; Zarri, L.; Filippetti, F. Demagnetizations diagnosis for Permanent Magnet Synchronous Motors based on advanced Wavelet Analysis. In Proceedings of the 2012 20th International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 2397–2403. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, W.; Kar, N.C. Torque-Ripple-Based Interior Permanent-Magnet Synchronous Machine Rotor Demagnetization Fault Detection and Current Regulation. IEEE Trans. Ind. Appl. 2017, 53, 2795–2804. [Google Scholar] [CrossRef]
- Urresty, J.C.; Riba, J.R.; Romeral, L. A back-emf based method to detect magnet failures in PMSMs. IEEE Trans. Magn. 2013, 49, 591–598. [Google Scholar] [CrossRef]
- Yang, Z.; Shi, X.; Krishnamurthy, M. Vibration monitoring of PM synchronous machine with partial demagnetization and inter-turn short circuit faults. In Proceedings of the 2014 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA, 15–18 June 2014. [Google Scholar] [CrossRef]
- Ishikawa, T.; Seki, Y.; Kurita, N. Analysis for fault detection of vector-controlled permanent magnet synchronous motor with permanent magnet defect. IEEE Trans. Magn. 2013, 49, 2331–2334. [Google Scholar] [CrossRef]
- Rajagopalan, S.; Restrepo, J.A.; Aller, J.M.; Habetler, T.G.; Harley, R.G. Wigner-Ville distributions for detection of rotor faults in brushless DC (BLDC) motors operating under non-stationary conditions. In Proceedings of the 2005 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, Vienna, Austria, 7–9 September 2005; pp. 7–9. [Google Scholar] [CrossRef]
- Delgado Prieto, M.; Garcia Espinosa, A.; Riba Ruiz, J.R.; Urresty, J.C.; Ortega, J.A. Feature Extraction of demagnetization faults in permanent-magnet synchronous motors based on box-counting fractal dimension. IEEE Trans. Ind. Electron. 2011, 58, 1594–1605. [Google Scholar] [CrossRef]
- Ruiz, J.R.R.; Garcia Espinosa, A.; Romeral, L.; Cusidó, J. Demagnetization diagnosis in permanent magnet synchronous motors under non-stationary speed conditions. Electr. Power Syst. Res. 2010, 80, 1277–1285. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J. Demagnetization fault diagnosis in surface mounted permanent magnet synchronous motors. IEEE Trans. Magn. 2013, 49, 1185–1192. [Google Scholar] [CrossRef]
- Lee, K.W.; Hong, J.; Lee, S.B.; Lee, S. Quality assurance testing for magnetization quality assessment of BLDC motors used in compressors. IEEE Trans. Ind. Appl. 2010, 46, 2452–2458. [Google Scholar] [CrossRef]
- Reigosa, D.; Fernandez, D.; Martinez, M.; Park, Y.; Lee, S.B.; Briz, F. Permanent Magnet Synchronous Machine Non-Uniform Demagnetization Detection Using Zero-Sequence Magnetic Field Density. IEEE Trans. Ind. Appl. 2019, 55, 3823–3833. [Google Scholar] [CrossRef]
- Wang, C.; Delgado Prieto, M.; Romeral, L.; Chen, Z.; Blaabjerg, F.; Liu, X. Detection of Partial Demagnetization Fault in PMSMs Operating under Nonstationary Conditions. IEEE Trans. Magn. 2016, 52, 8105804. [Google Scholar] [CrossRef]
- Guo, J.; Lu, S.; Zhai, C.; He, Q. Automatic bearing fault diagnosis of permanent magnet synchronous generators in wind turbines subjected to noise interference. Meas. Sci. Technol. 2018, 29, 025002. [Google Scholar] [CrossRef]
- Picot, A.; Obeid, Z.; Regnier, J.; Maussion, P.; Poignant, S.; Darnis, O. Bearing fault detection in synchronous machine based on the statistical analysis of stator current. In Proceedings of the IECON 2012—38th Annual Conference on IEEE Industrial Electronics Society, Montreal, QC, Canada, 25–28 October 2012; pp. 3862–3867. [Google Scholar] [CrossRef]
- Jankowska, K.; Ewert, P. Effectiveness Analysis of Rolling Bearing Fault Detectors Based On Self-Organising Kohonen Neural Network—A Case Study of PMSM Drive. Power Electron. Drives 2021, 6, 100–112. [Google Scholar] [CrossRef]
- Ewert, P.; Orlowska-Kowalska, T.; Jankowska, K. Effectiveness analysis of pmsm motor rolling bearing fault detectors based on vibration analysis and shallow neural networks. Energies 2021, 14, 712. [Google Scholar] [CrossRef]
- Rezig, A.; N’Diaye, A.; Mekideche, M.R.; Djerdir, A. Modelling and detection of bearing faults in Permanent Magnet Synchronous Motors. In Proceedings of the 2012 20th International Conference on Electrical Machines, Marseille, France, 2–5 September 2012; pp. 1778–1782. [Google Scholar] [CrossRef]
- Wu, Z.; Niu, J.; Lu, S.; Liu, Y.; Liu, F. Fault Diagnosis of Wind Turbine Bearing Using Variational Nonlinear Chirp Mode Decomposition and Order Analysis. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 479–484. [Google Scholar] [CrossRef]
- Guo, J.; Wang, X.; Zhai, C.; Niu, J.; Lu, S. Fault diagnosis of wind turbine bearing using synchrosqueezing wavelet transform and order analysis. In Proceedings of the 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Xi’an, China, 19–21 June 2019; pp. 2384–2387. [Google Scholar] [CrossRef]
- Wang, X.; Niu, J.; Lu, S.; Liu, F.; Liu, Y. Improved Rotating Speed Estimation and Bearing Fault Diagnosis Using Multi-Channel Vibration Signals. In Proceedings of the 2020 International Conference on Sensing, Measurement & Data Analytics in the era of Artificial Intelligence (ICSMD), Xi’an, China, 15–17 October 2020; pp. 507–511. [Google Scholar] [CrossRef]
- Rosero, J.; Romeral, J.L.; Cusido, J.; Ortega, J.A.; Garcia, A. Fault Detection of Eccentricity and Bearing Damage in a PMSM by means of Wavelet Transforms Decomposition of the Stator Current. In Proceedings of the 2008 Twenty-Third Annual IEEE Applied Power Electronics Conference and Exposition, Austin, TX, USA, 24–28 February 2008; pp. 111–116. [Google Scholar] [CrossRef]
- Rosero, J.; Romeral, L.; Rosero, E.; Urresty, J. Fault detection in dynamic conditions by meansof discrete wavelet decomposition for PMSM running under bearing damage. In Proceedings of the 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, Washington, DC, USA, 15–19 February 2009; pp. 951–956. [Google Scholar] [CrossRef]
- Gurusamy, V.; Baruti, K.H.; Zafarani, M.; Lee, W.; Akin, B. Effect of Magnets Asymmetry on Stray Magnetic Flux Based Bearing Damage Detection in PMSM. IEEE Access 2021, 9, 68849–68860. [Google Scholar] [CrossRef]
- Mboo, C.P.; Hameyer, K. Fault diagnosis of bearing damage by means of the linear discriminant analysis of stator current features from the frequency selection. IEEE Trans. Ind. Appl. 2016, 52, 3861–3868. [Google Scholar] [CrossRef]
- Mbo’O, C.P.; Hameyer, K. Bearing damage diagnosis by means of the linear discriminant analysis of stator current feature. In Proceedings of the 2015 IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Guarda, Portugal, 1–4 September 2015; pp. 296–302. [Google Scholar] [CrossRef]
- Lee, J.S.; Yoon, T.M.; Lee, K.B. Bearing fault detection of IPMSMs using zoom FFT. J. Electr. Eng. Technol. 2016, 11, 1235–1241. [Google Scholar] [CrossRef]
- Maliuk, A.S.; Prosvirin, A.E.; Ahmad, Z.; Kim, C.H. Novel Bearing Fault Diagnosis Using Gaussian Mixture Model-Based Fault Band Selection. Sensors 2021, 21, 6579. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, S.; Huang, W.; Wang, Q.; Zhang, S.; Xia, M. Efficient Data Reduction at the Edge of Industrial Internet of Things for PMSM Bearing Fault Diagnosis. IEEE Trans. Instrum. Meas. 2021, 70, 3508612. [Google Scholar] [CrossRef]
- Niu, J.; Lu, S.; Liu, Y.; Zhao, J.; Wang, Q. Intelligent bearing fault diagnosis based on tacholess order tracking for a variable-speed AC electric machine. IEEE Sens. J. 2019, 19, 1850–1861. [Google Scholar] [CrossRef]
- Lu, S.; He, Q.; Zhao, J. Bearing fault diagnosis of a permanent magnet synchronous motor via a fast and online order analysis method in an embedded system. Mech. Syst. Signal Process. 2018, 113, 36–49. [Google Scholar] [CrossRef]
- Lu, S.; Wang, X.; He, Q.; Liu, F.; Liu, Y. Fault diagnosis of motor bearing with speed fluctuation via angular resampling of transient sound signals. J. Sound Vib. 2016, 385, 16–32. [Google Scholar] [CrossRef]
- Yang, M.; Chai, N.; Liu, Z.; Ren, B.; Xu, D. Motor Speed Signature Analysis for Local Bearing Fault Detection with Noise Cancellation Based on Improved Drive Algorithm. IEEE Trans. Ind. Electron. 2020, 67, 4172–4182. [Google Scholar] [CrossRef]
- Ren, B.; Yang, M.; Chai, N.; Li, Y.; Xu, D. Fault Diagnosis of Motor Bearing Based on Speed Signal Kurtosis Spectrum Analysis. In Proceedings of the 2019 22nd International Conference on Electrical Machines and Systems (ICEMS), Harbin, China, 11–14 August 2019. [Google Scholar] [CrossRef]
- Ma, C.; Zuo, S. Black-box method of identification and diagnosis of abnormal noise sources of permanent magnet synchronous machines for electric eehicles. IEEE Trans. Ind. Electron. 2014, 61, 5538–5549. [Google Scholar] [CrossRef]
- Frosini, L. Novel diagnostic techniques for rotating electrical machines—A review. Energies 2020, 13, 5066. [Google Scholar] [CrossRef]
- Rafaq, M.S.; Lee, H.; Park, Y.; Lee, S.B.; Zapico, M.O.; Fernandez, D.; Diaz-Reigosa, D.; Briz, F. Airgap Search Coil Based Identification of PM Synchronous Motor Defects. IEEE Trans. Ind. Electron. 2022, 69, 6551–6560. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J.; Roshtkhari, M.J. Static-, dynamic-, and mixed-eccentricity fault diagnoses in permanent-magnet synchronous motors. IEEE Trans. Ind. Electron. 2009, 56, 4727–4739. [Google Scholar] [CrossRef]
- Goktas, T.; Zafarani, M.; Akin, B. Discernment of Broken Magnet and Static Eccentricity Faults in Permanent Magnet Synchronous Motors. IEEE Trans. Energy Convers. 2016, 31, 578–587. [Google Scholar] [CrossRef]
- Koura, M.B.; Boudinar, A.H.; Aimer, A.F.; Bendiabdellah, A.; Gherabi, Z. Diagnosis and discernment between eccentricity and demagnetization faults in PMSM drives. J. Power Electron. 2021, 21, 563–573. [Google Scholar] [CrossRef]
- Ahsanullah, K.; Jeyasankar, E.; Vignesh, A.N.; Panda, S.K.; Shanmukha, R.; Nadarajan, S. Eccentricity fault analysis in PMSM based marine propulsion motors. In Proceedings of the 2017 20th International Conference on Electrical Machines and Systems (ICEMS), Sydney, NSW, Australia, 11–14 August 2017. [Google Scholar] [CrossRef]
- Akar, M.; Taşkin, S.; Şeker, S.; Cankaya, I. Detection of static eccentricity for permanent magnet synchronous motors using the coherence analysis. Turk. J. Electr. Eng. Comput. Sci. 2010, 18, 963–974. [Google Scholar] [CrossRef]
- Galfarsoro, U.; McCloskey, A.; Hernandez, X.; Almandoz, G.; Zarate, S.; Arrasate, X. Eccentricity detection procedure in electric motors by force transducer and search coils in a novel experimental test bench. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 220–226. [Google Scholar] [CrossRef]
- Kang, K.; Song, J.; Kang, C.; Sung, S.; Jang, G. Real-Time Detection of the Dynamic Eccentricity in Permanent-Magnet Synchronous Motors by Monitoring Speed and Back EMF Induced in an Additional Winding. IEEE Trans. Ind. Electron. 2017, 64, 7191–7200. [Google Scholar] [CrossRef]
- Rosero García, J.; Romeral, J.L.; Rosero García, E. Detecting eccentricity faults in a PMSM in nonstationary conditions. Ing. E Investig. 2012, 32, 5–10. [Google Scholar]
- Ilamparithi, T.; Nandi, S. Analysis, modeling and simulation of static eccentric reluctance synchronous motor. In Proceedings of the 8th IEEE Symposium on Diagnostics for Electrical Machines, Power Electronics & Drives, Bologna, Italy, 5–8 September 2011; pp. 45–50. [Google Scholar] [CrossRef]
- Ilamparithi, T.C.; Nandi, S. Detection of eccentricity faults in three-phase reluctance synchronous motor. IEEE Trans. Ind. Appl. 2012, 48, 1307–1317. [Google Scholar] [CrossRef]
- Pazouki, E.; Islam, M.Z.; Bonthu, S.S.R.; Choi, S. Eccentricity fault detection in multiphase permanent magnet assisted synchronous reluctance motor. In Proceedings of the 2015 IEEE International Electric Machines & Drives Conference (IEMDC), Coeur d’Alene, ID, USA, 10–13 May 2015; pp. 240–246. [Google Scholar] [CrossRef]
- Mahmoud, H.; Bianchi, N. Eccentricity in Synchronous Reluctance Motors—Part II: Different Rotor Geometry and Stator Windings. IEEE Trans. Energy Convers. 2015, 30, 754–760. [Google Scholar] [CrossRef]
- López-Torres, C.; Riba, J.R.; Garcia, A.; Romeral, L. Detection of eccentricity faults in five-phase ferrite-PM assisted synchronous reluctance machines. Appl. Sci. 2017, 7, 565. [Google Scholar] [CrossRef]
- Gherabi, Z.; Benouzza, N.; Toumi, D.; Bendiabdellah, A. Eccentricity Fault diagnosis in PMSM using Motor Current Signature Analysis. In Proceedings of the 2019 International Aegean Conference on Electrical Machines and Power Electronics (ACEMP) & 2019 International Conference on Optimization of Electrical and Electronic Equipment (OPTIM), Istanbul, Turkey, 27–29 August 2019; pp. 205–210. [Google Scholar] [CrossRef]
- Karami, M.; Mariun, N.; Mehrjou, M.R.; Ab Kadir, M.Z.A.; Misron, N.; Mohd Radzi, M.A. Static Eccentricity Fault Recognition in Three-Phase Line Start Permanent Magnet Synchronous Motor Using Finite Element Method. Math. Probl. Eng. 2014, 2014, 132647. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Faiz, J. Configuration impacts on eccentricity fault detection in permanent magnet synchronous motors. IEEE Trans. Magn. 2012, 48, 903–906. [Google Scholar] [CrossRef]
- Ebrahimi, B.M.; Roshtkhari, M.J.; Faiz, J.; Khatami, S.V. Advanced Eccentricity Fault Recognition in Permanent Magnet Synchronous Motors Using Stator Current Signature Analysis. IEEE Trans. Ind. Electron. 2014, 61, 2041–2052. [Google Scholar] [CrossRef]
- Lin, F.; Zuo, S.; Deng, W. Impact of rotor eccentricity on electromagnetic vibration and noise of permanent magnet synchronous motor. J. Vibroengineering 2018, 20, 923–935. [Google Scholar] [CrossRef]
- Galfarsoro, U.; McCloskey, A.; Zarate, S.; Hernández, X.; Almandoz, G. Influence of Manufacturing Tolerances and Eccentricities on the Electromotive Force in Permanent Magnet Synchronous Motors. In Proceedings of the 2022 International Conference on Electrical Machines (ICEM), Valencia, Spain, 5–8 September 2022; pp. 703–709. [Google Scholar] [CrossRef]
- Hong, J.; Park, S.; Hyun, D.; Kang, T.J.; Lee, S.B.; Kral, C.; Haumer, A. Detection and classification of rotor demagnetization and eccentricity faults for PM synchronous motors. IEEE Trans. Ind. Appl. 2012, 48, 923–932. [Google Scholar] [CrossRef]
- Hong, J.; Lee, S.B.; Kral, C.; Haumer, A. Detection of airgap eccentricity for permanent magnet synchronous motors based on the d-axis inductance. IEEE Trans. Power Electron. 2012, 27, 2605–2612. [Google Scholar] [CrossRef]
- Park, Y.; Yang, C.; Lee, S.B.; Lee, D.M.; Fernandez, D.; Reigosa, D.; Briz, F. Online detection and classification of rotor and load defects in PMSMs Based on Hall sensor measurements. IEEE Trans. Ind. Appl. 2019, 55, 3803–3812. [Google Scholar] [CrossRef] [Green Version]
- Ewert, P.; Jaworski, M. Application of selected higher-order methods to detect rotor unbalance of drive system with PMSM. In Proceedings of the 2021 IEEE 19th International Power Electronics and Motion Control Conference (PEMC), Gliwice, Poland, 25–29 April 2021; pp. 874–879. [Google Scholar] [CrossRef]
- Hang, J.; Zhang, J.; Cheng, M.; Wang, Z. Fault diagnosis of mechanical unbalance for permanent magnet synchronous motor drive system under nonstationary condition. In Proceedings of the 2013 IEEE Energy Conversion Congress and Exposition, Denver, CO, USA, 15–19 September 2013; pp. 3556–3562. [Google Scholar] [CrossRef]
- Rafaq, M.S.; Lee, H.; Park, Y.; Lee, S.B.; Fernandez, D.; Diaz-Reigosa, D.; Briz, F. A Simple Method for Identifying Mass Unbalance Using Vibration Measurement in Permanent Magnet Synchronous Motors. IEEE Trans. Ind. Electron. 2022, 69, 6441–6444. [Google Scholar] [CrossRef]
- Park, C.H.; Lee, J.; Ahn, G.; Youn, M.; Youn, B.D. Fault Detection of PMSM under Non-Stationary Conditions Based on Wavelet Transformation Combined with Distance Approach. In Proceedings of the 2019 IEEE 12th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), Toulouse, France, 27–30 August 2019; pp. 88–93. [Google Scholar] [CrossRef]
- Huang, X.; Yang, M.; Ren, B.; Chai, N.; Xu, D. Angle misalignment detection and its suppression algorithm in rotor system based on speed signal. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC 2020 ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 3174–3179. [Google Scholar] [CrossRef]
- Chai, N.; Yang, M.; Ren, B.; Huang, X.; Xu, D. Misalignment Detection of Rotor System Based on Adaptive Input-output Model Identification of Motor Speed. In Proceedings of the 2020 IEEE 9th International Power Electronics and Motion Control Conference (IPEMC 2020 ECCE Asia), Nanjing, China, 29 November–2 December 2020; pp. 2266–2271. [Google Scholar] [CrossRef]
- Pietrzak, P.; Wolkiewicz, M. Application of Spectral and Wavelet Analysis of Stator Current to Detect Angular Misalignment in PMSM Drive Systems. Power Electron. Drives 2021, 6, 42–60. [Google Scholar] [CrossRef]
- Zamudio-Ramirez, I.; Ramirez-Nunez, J.A.; Antonino-Daviu, J.; Osornio-Rios, R.A.; Quijano-Lopez, A.; Razik, H.; De Jesus Romero-Troncoso, R. Automatic Diagnosis of Electromechanical Faults in Induction Motors Based on the Transient Analysis of the Stray Flux via MUSIC Methods. IEEE Trans. Ind. Appl. 2020, 56, 3604–3613. [Google Scholar] [CrossRef]
- Liu, X.; Liang, D.; Du, J.; Yu, Y.; Yang, X.; Luo, Z. Effects analysis of misalignments on dynamic characteristics test for permanent magnet synchronous motor. In Proceedings of the 2014 17th International Conference on Electrical Machines and Systems (ICEMS), Hangzhou, China, 22–25 October 2014; pp. 1543–1547. [Google Scholar] [CrossRef]
- Yao, Y.; Li, Y.; Yin, Q. A novel method based on self-sensing motor drive system for misalignment detection. Mech. Syst. Signal Process. 2019, 116, 217–229. [Google Scholar] [CrossRef]
- Wikimedia. 2013. Available online: https://commons.wikimedia.org/wiki/File:Pump_diagram.PNG (accessed on 12 November 2013).
Type of Motor | Domain Classification | Reference | Signal Analyzed | Methodology | Regime | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
SynRM | Frequency-domain method | [38,39,40] | Current | FFT | Steady-state | NINV, EV | SIM [38], SSC |
[39] | ZSCC | NINV, EV | SSC | ||||
[40] | Current in q-axis | NINV, EV | SSC | ||||
SynRM (PMAssisted) | Frequency-domain method | [41] | ZSVC | FFT | Steady-state | NINV, EV | SSC |
Current | NINV, EV | SSC | |||||
Time-domain method | [42] | Waveform | * | NINV | SIM | ||
PMSM | Frequency-domain method | [18,19,20,21,24,29,43] | Current | FFT | Steady-state | EV | SSC |
[23,43] | EPVA | EV | SSC | ||||
[20,24] | Current envelope | FFT | EV | SSC | |||
[27,44] | ZSVC | EV | SSC | ||||
[25] | Current negative sequence component | EV | SSC | ||||
[28] | Voltage in dq frame | EV | SC | ||||
[22] | Current | BS | EV | SSC | |||
PSD | EV | SSC | |||||
MUSIC | EV, HS | SSC | |||||
[29] | Speed | FFT | |||||
[26] | Voltage | FFT + PCA | EV | SSC | |||
[17] | FFT | EV | SSC | ||||
[19] | Current | DWT | EV | SSC | |||
[30] | STFT | Transient | EV, TA | Trade-off between t-f resolution | |||
[31,32] | HHT | EV, TA | |||||
Time–frequency-domain method | [35,36] | ZSVC | DWT | EV, TA | |||
[27] | HHT | EV, TA | |||||
[37] | Voltage in q-axis | DWT | EV, TA | ||||
[33,34] | Current in q-axis | STFT | EV, TA | Trade-off between t-f resolution | |||
Time domain method | [45] | Current | Residual Analysis | EV, TA | |||
[46] | Back EMF | EV, TA | |||||
[47] | Current | PCA | * | SIM | |||
[24] | RMS | Steady-state | EV | SSC | |||
[24] | Current envelope | Mean | EV | SSC |
Type of Motor | Domain Classification | Reference | Signal Analyzed | Methodology | Regime | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
PMSM | Frequency-domain method | [48,49,50,51,52] | Current | FFT | Steady-state | NINV, PD, EV | SSC, LS |
[50,54] | ZSCC | PD, UD, HS, EV | INV, SSC | ||||
[49,55] | ZSVC | PD, HS, EV | INV, SSC | ||||
[57] | Leakage Flux | PD, UD, HS | INV, SSC | ||||
[58] | Air-gap Flux | PD, UD, HS | INV, SSC | ||||
[59,60,68] | Back EMF | NINV, UD [60], EV [59], PD [59] | SIM [60], SSC | ||||
[69] | Vibration | NINV, PD | SSC, VM | ||||
Time–frequency-domain method | [61,62,70] | Current | CWT/DWT | Transient | NINV, UD, EV | ||
[65,67,71] | WVD | NINV, UD, EV | |||||
[72] | CWD | NINV, PD | HS | ||||
[63,64,73] | HHT | NINV, TA, PD, EV | HS | ||||
[66] | Back EMF | DWT | * | NINV, UD | |||
[67] | Torque | CWT and GST | NINV, PD, EV | ||||
Time-domain method | [74] | Torque | TDE | NINV, PD, UD | LS | ||
[75] | Back EMF | ZCP | NINV, PD, HS | ||||
[76] | ZSMC | Mean Peak | Steady-state | NINV, UD, EV | LS | ||
[77] | Current | VKF-OT | Transient | NINV, PD, HS, TA |
Type of Motor | Domain Classification | Reference | Signal Analyzed | Methodology | Regime | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
PMSM | Frequency-domain method | [79,86,87,89,90] | Current | FFT | Steady-state | NINV | SSC |
[88] | OA | * | NINV, EV | OB, LS | |||
[91] | ZFFT | NINV | SIM | ||||
[82] | Current EPVA | FFT | Steady-state | SSC, SIM | |||
OA | Transient | NINV, TA | |||||
[78,79,80,81,82] | Vibration | FFT | Steady-state | NINV | SSC, VM | ||
[78,82] | OA | Transient | NINV | OB, VM | |||
[78,80,81,92] | Vibration Envelope | FFT | Steady-state | NINV | VM | ||
[83,84,85,93,94] | OA | Transient | NINV, TA | VM | |||
[95] | Noise | OA | TA, SIM and EV | VM | |||
[96] | FFT, OA | ||||||
[88] | Stray Flux | OA | * | NINV, HS, EV | OB, AC | ||
[97] | Speed Envelope | FFT | Steady-state | EV | SSC | ||
[98] | Speed Vibration Current | FFT + Kurtosis Spectrum | * | Wide speed range | OB, VM | ||
Time–frequency-domain method | [87] | Current | DWT | Transient | NINV, EV, TA | ||
[87] | CWT | ||||||
[99] | Noise | STFT | NINV, TA | VM | |||
Time domain method | [89,90] | Current | Statistical Features | * | NINV |
Type of Motor | Domain Classification | Reference | Signal Analyzed | Methodology | Regime | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
SynRM | Frequency-domain method | [110,111] | Current | FFT | Steady-state | NINV, EV, SE, DE and ME [111] | SSC |
Time-domain method | [113] | Torque Air-gap flux Radial Force | Waveform | * | NINV, SE and DE | SIM | |
SynRM (PMAssisted) | Frequency-domain method | [114] | Current ZSVC | FFT | Steady-state | NINV, SE | SSC, SIM |
[112] | Back EMF | NINV, SE, DE and ME | SSC, SIM | ||||
Time-domain method | [112] | Torque ripple | Waveform | * | NINV | SIM | |
PMSM | Frequency-domain method | [101,102,103,104,115] | Current | FFT | Steady-state | NINV, EV | SSC, SIM [115] |
[116,117,118] | PSD | NINV, EV | SSC | ||||
[106] | * | NINV, EV | SE | ||||
[101,105] | Vibration | FFT | Steady-state | NINV | SSC, VM | ||
[119] | FFT, OA | * | NINV, EV | VM, SIM (SE) | |||
Noise | NINV, EV | VM, SIM (SE) | |||||
[106] | Voltage Speed Torque | PSD | * | EV | SE | ||
[108] | Air-gap Flux | FFT | Steady-state | EV | NINV, DE | ||
[120] | UMP | * | EV | ||||
Time–frequency-domain method | [109] | Current | CWT | Transient | NINV, EV, TA | ||
[86,109] | DWT | NINV, TA, EV [109] | |||||
[118] | Steady-state | NINV, EV | SSC | ||||
Time-domain method | [105,101] | Air-gap Flux | Waveform | * | INV, AC | ||
[107] | UMP | Peak | Steady-state | EV | SSC, INV, AC | ||
[121,122] | Current in d-axis | Waveform | * | EV, HS | DE | ||
[118] | Current | PCA | Steady-state | NINV, EV | SSC, SE, DE | ||
[123] | Axial Flux | Waveform | EV | SSC, AC, INV |
Type of Motor | Domain Classification | Reference | Signal Analyzed | Methodology | Regime | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
PMSM | Frequency-domain method | [124] | Vibration | FFT | Steady-state | NINV, EV, LCC | SSC, VM |
BS | NINV, EV | SSC, VM | |||||
FS | NINV, EV, TA | SSC, VM, HCC | |||||
[125] | Current Current EPVA | FFT | NINV, LCC | SSC, SIM | |||
[126] | Vibration | NINV, EV | SSC, VM | ||||
Time–frequency-domain method | [125] | Current EPVA | DWT | Transient | NINV, TA | SIM | |
[127] | Current | CWT | NINV, TA | SIM |
Type of Motor | Domain Classification | Reference | Signal Analyzed | Methodology | Regime | Advantages | Disadvantages |
---|---|---|---|---|---|---|---|
PMSM | Frequency-domain method | [130] | Current | FFT | Steady-state | NINV | SSC, AM |
Current EPVA | |||||||
Current ENV | |||||||
[128,129] | Speed | NINV, EV, AM and PM [129] | AM [128], SSC | ||||
Time–frequency-domain method | [130] | Current | DWT | NINV | SSC, AM | ||
Current EPVA | |||||||
Current ENV | |||||||
Time-domain method | [132] | Torque | Waveform | EV | PM, SSC | ||
[133] | Current in q-axis | VPT | EV | SSC, AM | |||
[130] | Current | RMS | * | NINV | AM |
Power | 0.8 kW |
Nominal head | 18 m |
Speed range | 1000–3400 rpm |
Number of impeller blades | 7 |
Pole pairs | 4 |
Power | 1.1 kW |
Voltage | 360 V—star connection |
Nominal Current | 3 A |
Nominal torque | 7 Nm |
Base speed | 1500 rpm |
Pole pairs | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Navarro-Navarro, A.; Ruiz-Sarrio, J.E.; Biot-Monterde, V.; Antonino-Daviu, J.A.; Becker, V.; Urschel, S. Application of Transient Analysis Techniques to Fault Diagnosis in Low- and Medium-Power Synchronous Machines. Machines 2023, 11, 288. https://doi.org/10.3390/machines11020288
Navarro-Navarro A, Ruiz-Sarrio JE, Biot-Monterde V, Antonino-Daviu JA, Becker V, Urschel S. Application of Transient Analysis Techniques to Fault Diagnosis in Low- and Medium-Power Synchronous Machines. Machines. 2023; 11(2):288. https://doi.org/10.3390/machines11020288
Chicago/Turabian StyleNavarro-Navarro, Angela, Jose E. Ruiz-Sarrio, Vicente Biot-Monterde, Jose A. Antonino-Daviu, Vincent Becker, and Sven Urschel. 2023. "Application of Transient Analysis Techniques to Fault Diagnosis in Low- and Medium-Power Synchronous Machines" Machines 11, no. 2: 288. https://doi.org/10.3390/machines11020288
APA StyleNavarro-Navarro, A., Ruiz-Sarrio, J. E., Biot-Monterde, V., Antonino-Daviu, J. A., Becker, V., & Urschel, S. (2023). Application of Transient Analysis Techniques to Fault Diagnosis in Low- and Medium-Power Synchronous Machines. Machines, 11(2), 288. https://doi.org/10.3390/machines11020288