Performance Comparison of Two Architectures of 6R Articulated Robots
Abstract
:1. Introduction
2. The KDI Performance Index
2.1. KDI Performance Index for the Investigated Architectures
2.2. KDI Exploited for the Rotational Velocity
3. Preliminary Considerations
3.1. Kinematic Parameters of the Two 6R Articulated Robots
3.2. Maximum Joint Velocities
4. KDI Analysis for the Linear Velocity
4.1. Point Sets
4.2. KDI along the Direction of the X Axis
4.2.1. Motor Nearest to Its Maximum Velocity
4.2.2. KDI along the Direction of the X Axis on Different Planes
4.2.3. KDI along the Direction of the X Axis with Modified Maximum Joint Speeds
4.3. KDI along the Direction of the Z Axis
Motor Nearest to Its Maximum Velocity
5. KDI Analysis for the Angular Velocity
5.1. KDI for the Angular Velocity
5.2. KDI for the Angular Velocity
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MDPI | Multidisciplinary Digital Publishing Institute |
DOAJ | Directory of open access journals |
TLA | Three letter acronym |
LD | Linear dichroism |
References
- Pieper, D. The Kinematics of Manipulators under Computer Control; Computer Science Department, Stanford University: Stanford, CA, USA, 1968. [Google Scholar]
- Wang, X.; Zhang, D.; Zhao, C. The inverse kinematics of a 7R 6-degree-of-freedom robot with non-spherical wrist. Adv. Mech. Eng. 2017, 9, 1687814017714985. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Yu, H.; Shen, N.; Zhong, Z.; Lu, Y.; Fan, J. A novel inverse kinematics method for 6-DOF robots with non-spherical wrist. Mech. Mach. Theory 2021, 157, 104180. [Google Scholar] [CrossRef]
- Hawkins, K.P. Analytic Inverse Kinematics for the Universal Robots UR-5/UR-10 Arms. 2013. Available online: https://smartech.gatech.edu/handle/1853/50782 (accessed on 29 December 2022).
- Villalobos, J.; Sanchez, I.Y.; Martell, F. Statistical comparison of Denavit-Hartenberg based inverse kinematic solutions of the UR5 robotic manipulator. In Proceedings of the 2021 International Conference on Electrical, Computer, Communications and Mechatronics Engineering (ICECCME), Mauritius, Mauritius, 7–8 October 2021. [Google Scholar]
- Kebria, P.M.; Al-wais, S.; Abdi, H.; Nahavandi, S. Kinematic and dynamic modelling of UR5 manipulator. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 004229–004234. [Google Scholar]
- Villalobos, J.; Sanchez, I.Y.; Martell, F. Alternative Inverse Kinematic Solution of the UR5 Robotic Arm; Lecture Notes in Networks and Systems; Springer: Berlin/Heidelberg, Germany, 2022; Volume 347, pp. 200–207. [Google Scholar]
- FarzanehKaloorazi, M.H.; Bonev, I.A. Singularities of the typical collaborative robot arm. In Proceedings of the ASME Design Engineering Technical Conference, Quebec City, QC, Canada, 26–29 August 2018; Volume 5B-2018. [Google Scholar]
- Weyrer, M.; Brandstötter, M.; Husty, M. Singularity Avoidance Control of a Non-Holonomic Mobile Manipulator for Intuitive Hand Guidance. Robotics 2019, 8, 14. [Google Scholar] [CrossRef] [Green Version]
- Villalobos, J.; Sanchez, I.Y.; Martell, F. Singularity Analysis and Complete Methods to Compute the Inverse Kinematics for a 6-DOF UR/TM-Type Robot. Robotics 2022, 11, 137. [Google Scholar] [CrossRef]
- Wu, X.; Yan, R.; Xiang, Z.; Zheng, F.; Tan, R. Performance Analysis and Comparison of Three Planar Parallel Manipulators. In Mechanisms and Machine Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 79, pp. 270–279. [Google Scholar]
- Baena, A.H.; Valdez, S.I.; de Jesús Trujillo Romero, F.; Montes, M.M. Comparison of Parallel Versions of SA and GA for Optimizing the Performance of a Robotic Manipulator. In Mechanisms and Machine Science; Springer: Berlin/Heidelberg, Germany, 2020; Volume 86, pp. 290–303. [Google Scholar]
- Yoshikawa, T. Dynamic manipulability of robot manipulators. In Proceedings of the 1985 IEEE International Conference on Robotics and Automation, St. Louis, MO, USA, 25–28 March 1985; Volume 2, pp. 1033–1038. [Google Scholar]
- Salisbury, J.K.; Craig, J.J. Articulated Hands: Force Control and Kinematic Issues. Int. J. Robot. Res. 1982, 1, 4–17. [Google Scholar] [CrossRef]
- Angeles, J.; López-Cajún, C.S. Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators. Int. J. Robot. Res. 1992, 11, 560–571. [Google Scholar] [CrossRef]
- Gosselin, C.; Angeles, J. A Global Performance Index for the Kinematic Optimization of Robotic Manipulators. J. Mech. Des. 1991, 113, 220–226. [Google Scholar] [CrossRef]
- Gao, F.; Liu, X.; Gruver, W.A. Performance evaluation of two-degree-of-freedom planar parallel robots. Mech. Mach. Theory 1998, 33, 661–668. [Google Scholar] [CrossRef]
- Merlet, J.P. Jacobian, manipulability, condition number, and accuracy of parallel robots. J. Mech. Des. Trans. ASME 2006, 128, 199–206. [Google Scholar] [CrossRef]
- Gosselin, C.M. The optimum design of robotic manipulators using dexterity indices. Robot. Auton. Syst. 1992, 9, 213–226. [Google Scholar] [CrossRef]
- Kim, S.; Ryu, J. New dimensionally homogeneous Jacobian matrix formulation by three end-effector points for optimal design of parallel manipulators. IEEE Trans. Robot. Autom. 2003, 19, 731–737. [Google Scholar]
- Kim, S.; Ryu, J. Force transmission analyses with dimensionally homogeneous jacobian matrices for parallel manipulators. KSME Int. J. 2004, 18, 780–788. [Google Scholar] [CrossRef]
- Mansouri, I.; Ouali, M. A new homogeneous manipulability measure of robot manipulators, based on power concept. Mechatronics 2009, 19, 927–944. [Google Scholar] [CrossRef]
- Mansouri, I.; Ouali, M. The power manipulability A new homogeneous performance index of robot manipulators. Robot.-Comput.-Integr. Manuf. 2011, 27, 434–449. [Google Scholar] [CrossRef]
- Cardou, P.; Bouchard, S.; Gosselin, C. Kinematic-sensitivity indices for dimensionally nonhomogeneous jacobian matrices. IEEE Trans. Robot. 2010, 26, 166–173. [Google Scholar] [CrossRef]
- Wang, J.; Liu, X.; Wu, C. Optimal design of a new spatial 3-DOF parallel robot with respect to a frame-free index. Sci. China Ser. E Technol. Sci. 2009, 52, 986–999. [Google Scholar] [CrossRef]
- Wang, J.; Wu, C.; Liu, X. Performance evaluation of parallel manipulators: Motion/force transmissibility and its index. Mech. Mach. Theory 2010, 45, 1462–1476. [Google Scholar] [CrossRef]
- Zhang, D.; Cursi, F.; Yang, G. Wsrender: A workspace analysis and visualization toolbox for robotic manipulator design and verification. IEEE Robot. Autom. Lett. 2019, 4, 3836–3843. [Google Scholar] [CrossRef]
- Cursi, F.; Bai, W.; Yeatman, E.M.; Kormushev, P. GlobDesOpt: A Global Optimization Framework for Optimal Robot Manipulator Design. IEEE Access 2022, 10, 5012–5023. [Google Scholar] [CrossRef]
- Boschetti, G. A novel kinematic directional index for industrial serial manipulators. Appl. Sci. 2020, 10, 5953. [Google Scholar] [CrossRef]
i | |||||
---|---|---|---|---|---|
1 | 0 | 0 | 0 | ||
2 | 0 | ||||
3 | 0 | 0 | |||
4 | |||||
5 | 0 | 0 | |||
6 | 0 |
i | |||||
---|---|---|---|---|---|
1 | 0 | 0 | |||
2 | 0 | 0 | |||
3 | 0 | 0 | |||
4 | 0 | ||||
5 | 0 | ||||
6 | 0 |
J1 | J2 | J3 | J4 | J5 | J6 | |
---|---|---|---|---|---|---|
(/s) | (/s) | (/s) | (/s) | (/s) | (/s) | |
Adept Viper S650 | 328 | 300 | 375 | 375 | 375 | 600 |
ABB IRB 1300 | 280 | 228 | 330 | 500 | 415 | 720 |
ABB IRB 6790 | 100 | 90 | 90 | 170 | 120 | 190 |
FANUC LR Mate 200ic | 350 | 350 | 400 | 450 | 450 | 720 |
Yaskawa Motoman MH50 | 180 | 178 | 178 | 250 | 250 | 360 |
FANUC R-2000ib/165F | 110 | 110 | 110 | 150 | 150 | 220 |
ABB IRB 4600-45/2.05 | 175 | 175 | 175 | 250 | 250 | 360 |
J1 | J2 | J3 | J4 | J5 | J6 | |
---|---|---|---|---|---|---|
(/s) | (/s) | (/s) | (/s) | (/s) | (/s) | |
Omron TM5-700 | 180 | 180 | 180 | 225 | 225 | 225 |
Dobot Nova Series | 135 | 135 | 135 | 135 | 135 | 135 |
Universal Robots UR-5 | 180 | 180 | 180 | 180 | 180 | 180 |
Elephant Robotics MyCobot | 225 | 225 | 225 | 225 | 225 | 225 |
Hanwha Corporation HCR-3A | 180 | 180 | 180 | 360 | 360 | 360 |
Rainbow Robotics RB5-850 | 180 | 180 | 180 | 180 | 180 | 180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boschetti, G.; Sinico, T. Performance Comparison of Two Architectures of 6R Articulated Robots. Machines 2023, 11, 306. https://doi.org/10.3390/machines11020306
Boschetti G, Sinico T. Performance Comparison of Two Architectures of 6R Articulated Robots. Machines. 2023; 11(2):306. https://doi.org/10.3390/machines11020306
Chicago/Turabian StyleBoschetti, Giovanni, and Teresa Sinico. 2023. "Performance Comparison of Two Architectures of 6R Articulated Robots" Machines 11, no. 2: 306. https://doi.org/10.3390/machines11020306
APA StyleBoschetti, G., & Sinico, T. (2023). Performance Comparison of Two Architectures of 6R Articulated Robots. Machines, 11(2), 306. https://doi.org/10.3390/machines11020306