Fault Diagnosis and Health Management of Power Machinery
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bryakin, I.V.; Bochkarev, I.V.; Khramshin, V.R.; Gasiyarov, V.R.; Liubimov, I.V. Power Transformer Condition Monitoring Based on Evaluating Oil Properties. Machines 2022, 10, 630. [Google Scholar] [CrossRef]
- De Santiago-Perez, J.J.; Valtierra-Rodriguez, M.; Amezquita-Sanchez, J.P.; Perez-Soto, G.I.; Trejo-Hernandez, M.; Rivera-Guillen, J.R. Fourier-Based Adaptive Signal Decomposition Method Applied to Fault Detection in Induction Motors. Machines 2022, 10, 757. [Google Scholar] [CrossRef]
- Liu, Z.; Ding, K.; Lin, H.; He, G.; Du, C.; Chen, Z. A Novel Impact Feature Extraction Method Based on EMD and Sparse Decomposition for Gear Local Fault Diagnosis. Machines 2022, 10, 242. [Google Scholar] [CrossRef]
- Wang, F.; Dai, P.; Wang, J.; Niu, L. Vibration Responses of the Bearing-Rotor-Gear System with the Misaligned Rotor. Machines 2022, 10, 267. [Google Scholar] [CrossRef]
- Al-Ameri, S.M.; Abdul-Malek, Z.; Salem, A.A.; Noorden, Z.A.; Alawady, A.A.; Yousof, M.F.M.; Mosaad, M.I.; Abu-Siada, A.; Thabit, H.A. Frequency Response Analysis for Three-Phase Star and Delta Induction Motors: Pattern Recognition and Fault Analysis Using Statistical Indicators. Machines 2023, 11, 106. [Google Scholar] [CrossRef]
- Stephen, B.; Brown, B.; Young, A.; Duncan, A.; Helfer-Hoeltgebaum, H.; West, G.; Michie, C.; McArthur, S.D.J. A Quantile Dependency Model for Predicting Optimal Centrifugal Pump Operating Strategies. Machines 2022, 10, 557. [Google Scholar] [CrossRef]
- He, Y.L.; Qiu, M.H.; Yuan, X.H.; He, X.L.; Wang, H.P.; Jiang, M.Y.; Gerada, C.; Wan, S.T. Electromechanical Characteristics Analysis under DSISC Fault in Synchronous Generators. Machines 2022, 10, 432. [Google Scholar] [CrossRef]
- Wang, F.; Ling, X.; Zhang, Z.; Dai, P.; Yan, S.; Wang, L. The Effect of Fit Clearance between Outer Race and Housing on Vibration Characteristics of a Cylindrical Roller Bearing with Localized Defects. Machines 2022, 10, 415. [Google Scholar] [CrossRef]
- Li, X.; Ren, P.; Zhang, Z.; Jia, X.; Peng, X. A p–V Diagram Based Fault Identification for Compressor Valve by Means of Linear Discrimination Analysis. Machines 2022, 10, 53. [Google Scholar] [CrossRef]
- Feng, Y.; Li, W.; Zhang, K.; Li, X.; Cai, W.; Liu, R. Morphological Component Analysis-Based Hidden Markov Model for Few-Shot Reliability Assessment of Bearing. Machines 2022, 10, 435. [Google Scholar] [CrossRef]
- Zheng, J.; Xiong, H.; Zhang, Y.; Su, K.; Hu, Z. Bearing Fault Diagnosis via Incremental Learning Based on the Repeated Replay Using Memory Indexing (R-REMIND) Method. Machines 2022, 10, 338. [Google Scholar] [CrossRef]
- Hao, C.; Du, J.; Liang, H. Imbalanced Fault Diagnosis of Rolling Bearing Using Data Synthesis Based on Multi-Resolution Fusion Generative Adversarial Networks. Machines 2022, 10, 295. [Google Scholar] [CrossRef]
- Zong, X.; Yang, R.; Wang, H.; Du, M.; You, P.; Wang, S.; Su, H. Semi-Supervised Transfer Learning Method for Bearing Fault Diagnosis with Imbalanced Data. Machines 2022, 10, 515. [Google Scholar] [CrossRef]
- Duan, Y.; Xiao, J.; Li, H.; Zhang, J. Cross-Domain Remaining Useful Life Prediction Based on Adversarial Training. Machines 2022, 10, 438. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, R. Self-Attention and Multi-Task Based Model for Remaining Useful Life Prediction with Missing Values. Machines 2022, 10, 725. [Google Scholar] [CrossRef]
- Li, X.; Zhang, K.; Li, W.; Feng, Y.; Liu, R. A Two-Stage Transfer Regression Convolutional Neural Network for Bearing Remaining Useful Life Prediction. Machines 2022, 10, 369. [Google Scholar] [CrossRef]
- Office, J.E.; Gebraeel, N.; Lei, Y.; Li, N.; Si, X.; Zio, E. Prognostics and Remaining Useful Life Prediction of Machinery: Advances, Opportunities and Challenges. J. Dyn. Monit. Diagn. 2023, in press. [Google Scholar] [CrossRef]
- Marticorena, M.; García Peyrano, O. Rolling Bearing Condition Monitoring Technique Based on Cage Rotation Analysis and Acoustic Emission. J. Dyn. Monit. Diagn. 2022, 1, 57–65. [Google Scholar] [CrossRef]
- Miao, Y.; Li, C.; Shi, H.; Han, T. Deep network-based maximum correlated kurtosis deconvolution: A novel deep deconvolution for bearing fault diagnosis. Mech. Syst. Signal Process. 2023, 189, 110110. [Google Scholar] [CrossRef]
- Algolfat, A.; Wang, W.; Albarbar, A. Dynamic Responses Analysis of A 5MW NREL Wind Turbine Blade under Flap-Wise and Edge-Wise Vibrations. J. Dyn. Monit. Diagn. 2022, 1, 208–222. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Yang, W.; Jiang, D. A novel adversarial learning framework in deep convolutional neural network for intelligent diagnosis of mechanical faults. Knowl.-Based Syst. 2019, 165, 474–487. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Wu, L.; Sarkar, S.; Jiang, D. An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems. Mech. Syst. Signal Process. 2019, 117, 170–187. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Wu, J.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study. ISA Trans. 2020, 107, 224–255. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Li, T.; An, B.; Wang, S.; Ding, B.; Yan, R.; Chen, X. Model-driven deep unrolling: Towards interpretable deep learning against noise attacks for intelligent fault diagnosis. ISA Trans. 2022, 129, 644–662. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Lei, Y.; Yan, T.; Li, N.; Nandi, A. Residual Convolution Long Short-Term Memory Network for Machines Remaining Useful Life Prediction and Uncertainty Quantification. J. Dyn. Monit. Diagn. 2021, 1, 2–8. [Google Scholar] [CrossRef]
- Han, T.; Liu, C.; Yang, W.; Jiang, D. Deep transfer network with joint distribution adaptation: A new intelligent fault diagnosis framework for industry application. ISA Trans. 2020, 97, 269–281. [Google Scholar] [CrossRef] [Green Version]
- Han, T.; Liu, C.; Wu, R.; Jiang, D. Deep transfer learning with limited data for machinery fault diagnosis. Appl. Soft Comput. 2021, 103, 107150. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, Z.; Ren, J.; Zhai, Z.; Wang, S.; Chen, X. A transferable lithium-ion battery remaining useful life prediction method from cycle-consistency of degradation trend. J. Power Sources 2022, 521, 230975. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, Q.; Yu, X.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Applications of Unsupervised Deep Transfer Learning to Intelligent Fault Diagnosis: A Survey and Comparative Study. IEEE Trans. Instrum. Meas. 2021, 70, 1–28. [Google Scholar] [CrossRef]
- Han, T.; Wang, Z.; Meng, H. End-to-end capacity estimation of Lithium-ion batteries with an enhanced long short-term memory network considering domain adaptation. J. Power Sources 2022, 520, 230823. [Google Scholar] [CrossRef]
- Yao, J.; Han, T. Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data. Energy 2023, 271, 127033. [Google Scholar] [CrossRef]
- Han, T.; Li, Y.F.; Qian, M. A Hybrid Generalization Network for Intelligent Fault Diagnosis of Rotating Machinery Under Unseen Working Conditions. IEEE Trans. Instrum. Meas. 2021, 70, 1–11. [Google Scholar] [CrossRef]
- Zhou, T.; Han, T.; Droguett, E.L. Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework. Reliab. Eng. Syst. Saf. 2022, 224, 108525. [Google Scholar] [CrossRef]
- Han, T.; Li, Y.F. Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles. Reliab. Eng. Syst. Saf. 2022, 226, 108648. [Google Scholar] [CrossRef]
- Chen, X.; Ma, M.; Zhao, Z.; Zhai, Z.; Mao, Z. Physics-Informed Deep Neural Network for Bearing Prognosis with Multisensory Signals. J. Dyn. Monit. Diagn. 2022, 1, 200–207. [Google Scholar] [CrossRef]
- Chen, Y.; Rao, M.; Feng, K.; Zuo, M.J. Physics-Informed LSTM hyperparameters selection for gearbox fault detection. Mech. Syst. Signal Process. 2022, 171, 108907. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, T.; Liu, R.; Zhao, Z.; Kundu, P. Fault Diagnosis and Health Management of Power Machinery. Machines 2023, 11, 424. https://doi.org/10.3390/machines11040424
Han T, Liu R, Zhao Z, Kundu P. Fault Diagnosis and Health Management of Power Machinery. Machines. 2023; 11(4):424. https://doi.org/10.3390/machines11040424
Chicago/Turabian StyleHan, Te, Ruonan Liu, Zhibin Zhao, and Pradeep Kundu. 2023. "Fault Diagnosis and Health Management of Power Machinery" Machines 11, no. 4: 424. https://doi.org/10.3390/machines11040424
APA StyleHan, T., Liu, R., Zhao, Z., & Kundu, P. (2023). Fault Diagnosis and Health Management of Power Machinery. Machines, 11(4), 424. https://doi.org/10.3390/machines11040424