Applying Industrial Internet of Things Analytics to Manufacturing
Abstract
:1. Introduction
- To understand and analyse the data on injection moulding levels to track idle time levels;
- To determine abnormal idle time;
- To classify the different levels of abnormal idle time of injection moulding machines;
- To indicate the total idle time achieved.
2. A Data-Driven Approach
2.1. Transformation
2.2. A Data-Driven Framework
3. Case Study of a Manufacturing Site
3.1. Injection Moulding Machines
3.1.1. Data Preprocessing
3.1.2. Data Analysis
3.1.3. Trend Analysis
3.1.4. Model Selection
3.1.5. Machine Classification and Labelling
3.2. In-House Transit
3.2.1. From the Injection Moulding Workshop to the Assembly Workshop
3.2.2. From the Injection Moulding Workshop to the Warehouse
3.2.3. From the Warehouse to the Assembly Workshop
3.2.4. From the Warehouse to the Injection Moulding Workshop
3.2.5. From the Assembly Workshop to the Warehouse
3.2.6. Comparison of All In-House Transit Processes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed, N.; Al-Jaroodi, J. Applying blockchain in industry 4.0 applications. In Proceedings of the IEEE 9th Annual Computing and Communication Workshop and Conference, Las Vegas, NV, USA, 6–8 January 2020; pp. 852–858. [Google Scholar]
- Zuo, Y. Making smart manufacturing smarter—A survey on blockchain technology in Industry 4.0. Enterp. Inf. Syst. 2021, 15, 1323–1353. [Google Scholar] [CrossRef]
- Lasi, H.; Kemper, H.-G.; Fettke, P. Industry 4.0. Bise-Catchword 2014, 6, 239–242. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A.Y.C. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Patalas-Maliszewska, J.; Topczak, M. A new management approach based on additive manufacturing technologies and industry 4.0 requirements. Adv. Prod. Eng. Manag. 2021, 16, 125–135. [Google Scholar] [CrossRef]
- Vaidya, S.; Ambad, P.; Bhosle, S. Industry 4.0—A glimpse. Sci.-Procedia Manuf. 2018, 20, 233–238. [Google Scholar] [CrossRef]
- Geng, T.; Du, Y. The business model of intelligent manufacturing with Internet of Things and machine learning. Enterp. Inf. Syst. 2022, 16, 307–325. [Google Scholar] [CrossRef]
- Holdowsky, J.; Mahto, M.; Raynor, M.; Cotteleer, M. Inside the Internet of Things: A Primer on the Technologies Building the IoT; Deloitte University Press: New York, NY, USA, 2015. [Google Scholar]
- Medhi, A.M.; Patange, A.D.; Pardeshi, S.S.; Jegadeeshwaran, R.; Kuntoglu, M. Overview of contemporary systems driven by open-design movement. arXiv 2022, arXiv:2201.05698. [Google Scholar]
- Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [Google Scholar] [CrossRef]
- Raza, A.; Ikram, A.A.; Amin, A.; Ikram, A.J. A review of low cost and power efficient development boards for IoT applications. In Proceedings of the 2016 Future Technologies Conference (FTC), San Francisco, CA, USA, 6–7 December 2016; pp. 786–790. [Google Scholar]
- Sharma, K.; Anand, D.; Mishra, K.K.; Harit, S. Progressive study and investigation of machine learning techniques to enhance the efficiency and effectiveness of industry 4.0. Int. J. Softw. Sci. Comput. Intell. 2022, 14, 1–14. [Google Scholar] [CrossRef]
- Sun, K. Analysis of production and organisational management efficiency of Chinese family intelligent manufacturing enterprises based on IoT and machine learning technology. Enterp. Inf. Syst. 2022, 16, 208–222. [Google Scholar] [CrossRef]
- Farooqui, A.; Bengtsson, K.; Falkman, P.; Fabin, M. Towards data-driven approaches in manufacturing: An architecture to collect sequences of operations. Int. J. Prod. Res. 2020, 58, 4947–4963. [Google Scholar] [CrossRef] [Green Version]
- Rikalovic, A.; Suzic, N.; Bajic, B.; Piuri, V. Industry 4.0 implementation challenges and opportunities: A technological perspective. IEEE Syst. J. 2022, 16, 2797–2810. [Google Scholar] [CrossRef]
- Tran, M.Q.; Doan, H.P.; Vu, V.Q.; Vu, L.T. Machine learning and IoT-based approach for tool condition monitoring: A review and future prospects. Measurement 2023, 207, 112351. [Google Scholar] [CrossRef]
- Fung, V.W.C.; Yung, K.C. An intelligent approach for improving printed circuit board assembly process performance in Smart Manufacturing. Int. J. Eng. Bus. Manag. 2020, 12, 1–12. [Google Scholar] [CrossRef]
- Jintana, J.; Sopadang, A.; Ramingwong, S. Idea selection of new service for courier business: The opportunity of data analytics. Int. J. Eng. Bus. Manag. 2021, 13, 1–20. [Google Scholar] [CrossRef]
- Klingenberg, C.; Borges, M.A.V.; Antunes, J.A.V., Jr. Industry 4.0 as a data-driven paradigm: A systematic literature review on technologies. J. Manuf. Technol. Manag. 2019, 32, 570–592. [Google Scholar] [CrossRef]
- Bajaj, N.S.; Patange, A.D.; Jegadeeshwaran, R.; Pardeshi, S.S.; Kulkarni, K.A.; Ghatpande, R.S. Application of metaheuristic optimization based support vector machine for milling cutter health monitoring. Intell. Syst. Appl. 2023, 18, 200196. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Patange, A.D.; Pardeshi, S.S.; Jegadeeshwaran, R.; Zarkar, A.; Verma, K. Augmentation of decision tree model through hyper-parameters tuning for monitoring of cutting tool faults based on vibration signatures. J. Vib. Eng. Technol. 2022. [Google Scholar] [CrossRef]
- Loyola-González, O. Black-box vs. white-box: Understanding their advantages and weaknesses from a practical point of view. IEEE Access 2019, 7, 154096–154113. [Google Scholar] [CrossRef]
- Salama, M.; Kader, H.A.; Abdelwahab, A. An analytic framework for enhancing the performance of big heterogeneous data analysis. Int. J. Eng. Bus. Manag. 2021, 13, 1–11. [Google Scholar] [CrossRef]
- Jagan, D.; Senthilvel, A.N.; Prabhakar, R.; Maheswari, S.U. Analysis for maximal optimised penalty for the scheduling of jobs with specific due date on a single machine with idle time. Procedia Comput. Sci. 2015, 47, 247–254. [Google Scholar] [CrossRef] [Green Version]
- Li, Y. A fault prediction and cause identification approach in complex industrial processes based on deep learning. Comput. Intell. Neurosci. 2021, 2021, 6612342. [Google Scholar] [CrossRef] [PubMed]
- Helbing, G.; Ritter, M. Deep Learning for fault detection in wind turbines. Renew. Sustain. Energy Rev. 2018, 98, 189–198. [Google Scholar] [CrossRef]
- Shao, S.; McAleer, S.; Yan, R.; Baldi, P. Highly Accurate Machine Fault Diagnosis Using Deep Transfer Learning. IEEE Trans. Ind. Inform. 2019, 15, 2446–2455. [Google Scholar] [CrossRef]
Mean | Median | Q1 | Q3 | Maximum | Minimum | |
---|---|---|---|---|---|---|
3 Days | 146 | 140 | 112 | 164 | 469 | 28 |
4 Days | 193 | 187 | 151 | 218 | 652 | 20 |
5 Days | 241 | 231 | 186 | 278 | 705 | 54 |
6 Days | 286 | 284 | 212 | 323 | 845 | 28 |
7 Days | 330 | 330 | 261 | 374 | 653 | 28 |
10 Days | 477 | 461 | 383 | 520 | 1122 | 147 |
14 Days | 660 | 632 | 511 | 742 | 1148 | 175 |
Period | 3 days | 4 days | 5 days | 6 days | 7 days | 10 days | 14 days |
---|---|---|---|---|---|---|---|
Accuracy | 87.5% | 77.78% | 80% | 91.67% | 81.81% | 75% | 83.33% |
Machine ID | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
Avg (lv.) | 1 | 1 | 1 | 2 | 1 | 1 | 0 | 1 | 0 | 1 |
Record (lv.) | 1 | 1 | 1 | 1 | 1 | 0 | 2 | 2 | 2 | 0 |
Den (lv.) | 1 | 1 | 2 | 1 | 2 | 0 | 1 | 2 | 2 | 2 |
Adjusting | 1 | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 |
Pause | 1 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
Machine ID | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
Avg (lv.) | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 2 | 1 |
Record (lv.) | 2 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 0 | 1 |
Den (lv.) | 2 | 2 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Adjusting | 2 | 1 | 1 | 2 | 1 | 2 | 1 | 2 | 0 | 0 |
Pause | 0 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 2 | 2 |
Machine ID | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
Avg (lv.) | 2 | 0 | 0 | 0 | 2 | 2 | 2 | 1 | 2 | 2 |
Record (lv.) | 0 | 2 | 1 | 2 | 1 | 0 | 0 | 2 | 0 | 0 |
Den (lv.) | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 0 | 1 | 1 |
Adjusting | 0 | 2 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
Pause | 2 | 0 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2 |
Period | ||||
---|---|---|---|---|
15 Days | 20 Days | 30 Days | 50 days | |
Update frequency | 24 | 18 | 12 | 7 |
Standard deviation | 1624 | 1529 | 1370 | 1185 |
Variance | 2,648,220 | 2,340,692 | 1,878,966 | 1,404,674 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-H.; Ng, S.C.-H.; Kwok, K.C.-M.; Yung, K.-L. Applying Industrial Internet of Things Analytics to Manufacturing. Machines 2023, 11, 448. https://doi.org/10.3390/machines11040448
Wu C-H, Ng SC-H, Kwok KC-M, Yung K-L. Applying Industrial Internet of Things Analytics to Manufacturing. Machines. 2023; 11(4):448. https://doi.org/10.3390/machines11040448
Chicago/Turabian StyleWu, Chun-Ho, Stephen Chi-Hung Ng, Keith Chun-Man Kwok, and Kai-Leung Yung. 2023. "Applying Industrial Internet of Things Analytics to Manufacturing" Machines 11, no. 4: 448. https://doi.org/10.3390/machines11040448
APA StyleWu, C. -H., Ng, S. C. -H., Kwok, K. C. -M., & Yung, K. -L. (2023). Applying Industrial Internet of Things Analytics to Manufacturing. Machines, 11(4), 448. https://doi.org/10.3390/machines11040448