Analysis of Surface and Interior Permanent Magnet Motor Topologies for Active Electromagnetic Damping Applications
Abstract
:1. Introduction
2. Design
2.1. System Requirements from Vehicle Dynamics
2.2. Machine Geometry and Winding Scheme
2.3. Optimization Procedure
- Define a motor geometry in FEMM by using the parameters listed in Table 4.
- Simulate the motor performance in FEMM.
- Extract the torque output, the stator back iron, and the tooth base magnetic flux density values.
- Discard solutions where magnetic flux density values are aboved .
2.4. Motor Mapping
2.5. Performance Evaluation
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, G.; Hua, M.; Liu, W.; Wang, J.; Song, S.; Liu, C. Planning and Tracking Control of Full Drive-by-Wire Electric Vehicles in Unstructured Scenario. arXiv 2023, arXiv:2301.02753. [Google Scholar]
- Ali, A.; Ahmed, A.; Ali, M.; Azam, A.; Wu, X.; Zhang, Z.; Yuan, Y. A review of energy harvesting from regenerative shock absorber from 2000 to 2021: Advancements, emerging applications, and technical challenges. Environ. Sci. Pollut. Res. 2023, 30, 5371–5406. [Google Scholar] [CrossRef] [PubMed]
- Abdelkareem, M.A.; Xu, L.; Ali, M.K.A.; Elagouz, A.; Mi, J.; Guo, S.; Liu, Y.; Zuo, L. Vibration energy harvesting in automotive suspension system: A detailed review. Appl. Energy 2018, 229, 672–699. [Google Scholar] [CrossRef]
- He, T.; Zhu, Z.; Eastham, F.; Wang, Y.; Bin, H.; Wu, D.; Gong, L.; Chen, J. Permanent Magnet Machines for High-Speed Applications. World Electr. Veh. J. 2022, 13, 18. [Google Scholar] [CrossRef]
- Galluzzi, R.; Circosta, S.; Amati, N.; Tonoli, A. Rotary regenerative shock absorbers for automotive suspensions. Mechatronics 2021, 77, 102580. [Google Scholar] [CrossRef]
- Amati, N.; Festini, A.; Tonoli, A. Design of electromagnetic shock absorbers for automotive suspensions. Veh. Syst. Dyn. 2011, 49, 1913–1928. [Google Scholar] [CrossRef]
- Wang, J.; Geng, W.; Guo, J.; Li, L.; Zhang, Z. Design and Performance Comparison of Novel Flux-Concentrating IPM Machines for Power Generation System Application of Extended-Range Electric Vehicle. IEEE Trans. Ind. Electron. 2023, 70, 4450–4460. [Google Scholar] [CrossRef]
- Genta, G.; Morello, L. The Automotive Chassis: Volume 2: System Design; Springer Nature: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Zuo, L.; Nayfeh, S. Low order continuous-time filters for approximation of the ISO 2631-1 human vibration sensitivity weightings. J. Sound Vib. 2003, 265, 459–465. [Google Scholar] [CrossRef]
- 2631-1:1997; Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-Body Vibration—Part 1: General Requirements. International Organization for Standardization: Geneva, Switzerland, 1997.
- Zuo, L.; Zhang, P.S. Energy Harvesting, Ride Comfort, and Road Handling of Regenerative Vehicle Suspensions. J. Vib. Acoust. 2013, 135, 011002. [Google Scholar] [CrossRef]
- Dorrell, D.G.; Hsieh, M.F.; Popescu, M.; Evans, L.; Staton, D.A.; Grout, V. A Review of the Design Issues and Techniques for Radial-Flux Brushless Surface and Internal Rare-Earth Permanent-Magnet Motors. IEEE Trans. Ind. Electron. 2011, 58, 3741–3757. [Google Scholar] [CrossRef]
- Bianchi, N.; Bolognani, S. Design techniques for reducing the cogging torque in surface-mounted PM motors. IEEE Trans. Ind. Appl. 2002, 38, 1259–1265. [Google Scholar] [CrossRef]
- Magnussen, F.; Sadarangani, C. Winding factors and Joule losses of permanent magnet machines with concentrated windings. In Proceedings of the IEEE International Electric Machines and Drives Conference, IEMDC’03, Madison, WI, USA, 1–4 June 2003; Volume 1, pp. 333–339. [Google Scholar] [CrossRef]
- Fonger, N. Metal Stamping Design Guidelines. Available online: http://larsontool.com/wp-content/uploads/2015/06/larson_design_guide.pdf (accessed on 15 February 2023).
- Lu, C.; Ferrari, S.; Pellegrino, G. Two Design Procedures for PM Synchronous Machines for Electric Powertrains. IEEE Trans. Transp. Electrif. 2017, 3, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Pellegrino, G.; Cupertino, F.; Gerada, C. Automatic Design of Synchronous Reluctance Motors Focusing on Barrier Shape Optimization. IEEE Trans. Ind. Appl. 2015, 51, 1465–1474. [Google Scholar] [CrossRef]
- Meeker, D. Sliding Band Motion Model for Electric Machines. Available online: https://www.femm.info/wiki/SlidingBand# (accessed on 15 February 2023).
- Hanselman, D.C. Brushless Permanent-Magnet Motor Design; McGraw-Hill, Inc.: New York, NY, USA, 1994. [Google Scholar]
- Fatemi, A.; Demerdash, N.A.O.; Nehl, T.W.; Ionel, D.M. Large-Scale Design Optimization of PM Machines Over a Target Operating Cycle. IEEE Trans. Ind. Appl. 2016, 52, 3772–3782. [Google Scholar] [CrossRef]
- Duan, Y.; Harley, R.; Habetler, T. Comparison of Particle Swarm Optimization and Genetic Algorithm in the design of permanent magnet motors. In Proceedings of the 2009 IEEE 6th International Power Electronics and Motion Control Conference, Wuhan, China, 17–20 May 2009; pp. 822–825. [Google Scholar] [CrossRef]
- Duan, Y.; Ionel, D.M. A Review of Recent Developments in Electrical Machine Design Optimization Methods With a Permanent-Magnet Synchronous Motor Benchmark Study. IEEE Trans. Ind. Appl. 2013, 49, 1268–1275. [Google Scholar] [CrossRef]
- Hanselman, D.C. Brushless Permanent Magnet Motor Design, 2nd ed.; The Writers’ Collective: Cranston, RI, USA, 2003. [Google Scholar]
- Soong, W.L.; Miller, T.J.E. Field-weakening performance of brushless synchronous AC motor drives. IEE Proc.-Electr. Power Appl. 1994, 141, 331–340. [Google Scholar] [CrossRef]
- Meeker, D. Finite Element Method Magnetics/Version 4.2/User’s Manual. Available online: https://www.femm.info/wiki/Documentation/ (accessed on 15 February 2023).
- Popescu, M.; Ionel, D.M.; Boglietti, A.; Cavagnino, A.; Cossar, C.; McGilp, M.I. A General Model for Estimating the Laminated Steel Losses Under PWM Voltage Supply. IEEE Trans. Ind. Appl. 2010, 46, 1389–1396. [Google Scholar] [CrossRef]
- Ishak, D.; Zhu, Z.; Howe, D. Eddy-current loss in the rotor magnets of permanent-magnet brushless machines having a fractional number of slots per pole. IEEE Trans. Magn. 2005, 41, 2462–2469. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.; Castano, S.M.; Yang, R.; Kasprzak, M.; Bilgin, B.; Sathyan, A.; Dadkhah, H.; Emadi, A. Design and Comparison of Interior Permanent Magnet Motor Topologies for Traction Applications. IEEE Trans. Transp. Electrif. 2017, 3, 86–97. [Google Scholar] [CrossRef]
- Plewa, K.M.; Eger, T.R.; Oliver, M.L.; Dickey, J.P. Comparison between ISO 2631—1 Comfort Prediction Equations and Self-Reported Comfort Values during Occupational Exposure to Whole-Body Vehicular Vibration. J. Low Freq. Noise Vib. Act. Control. 2012, 31, 43–53. [Google Scholar] [CrossRef] [Green Version]
Parameter | Symbol | Value | Unit |
---|---|---|---|
Sprung mass | |||
Unsprung mass | |||
Spring stiffness | |||
Tire stiffness | 268 | ||
Suspension stroke limits | − | ||
Vehicle longitudinal speed | − | 70 | |
Road roughness index (ISO-C) | − | ||
Actuator force limits | − | ||
Actuator bandwidth | − | 1 |
Condition | |||||
---|---|---|---|---|---|
Comfort | 11.133 | 1.056 | 0.83 | 0.30 | 499.5 |
Road holding | 3.072 | 3.292 | 1.48 | 0.22 | 635.5 |
Parameter or Property | Symbol | Value | Unit |
---|---|---|---|
Number of magnets | 10 | − | |
Number of slots | 12 | − | |
Number of phases | 3 | − | |
Air gap length | g | 0.5 | |
Stator outside radius | 35 | ||
Slot shoe opening | 2 | ||
Shoe depth | 1.5 | ||
Tooth-to-shoe depth | 1.5 | ||
Stacking factor (M250-35A) | - | 0.95 | − |
PM remanent flux density | 1.14 | ||
PM recoil permeability | 1.05 | − | |
PM conductivity (N45) | |||
Electrical resistivity (copper) | 2.582 | ||
Winding fill factor | 0.3 | − |
Design Variable | Symbol | SPM | IPM Flat | IPM V-Shape | ||||||
---|---|---|---|---|---|---|---|---|---|---|
[Unit] | Low | Up | Opt | Low | Up | Opt | Low | Up | Opt | |
Radius ratio | 0.35 | 0.65 | 0.37 | 0.35 | 0.65 | 0.49 | 0.35 | 0.65 | 0.48 | |
Back iron width | 2 | 4.5 | 2.6 | 1 | 5 | 2.7 | 1 | 5 | 2.7 | |
Tooth base width | 4 | 9 | 4.7 | 2 | 8 | 5.1 | 2 | 8 | 4.9 | |
Magnet fraction | 0.91 | 0.99 | 0.94 | − | − | − | − | − | − | |
Opening angle | − | − | − | 18 | 31 | 27.4 | 18 | 32 | 23 | |
Magnet length | − | − | − | 1 | 3 | 2.9 | 1.8 | 4.5 | 2.1 | |
Web thickness | − | − | − | 0.4 | 1 | 0.7 | 0.4 | 2 | 0.4 | |
Magnet depth | − | − | − | − | − | − | 1 | 5 | 3.1 |
Parameter | Symbol | Units | SPM | IPM V-Shape | IPM Flat |
---|---|---|---|---|---|
Impulsive torque | |||||
Continuous torque | |||||
Torque ripple | |||||
Relative torque ripple | % | ||||
PM mass | − | ||||
Continuous current amplitude | |||||
Impulsive current amplitude | 31 | ||||
Number of turns per coil | N | − | 17 | 14 | 14 |
Base speed | 3976 | 3949 | 3893 | ||
Active length |
Metric | Units | SPM | IPM Flat | IPM V-Shape | |||
---|---|---|---|---|---|---|---|
Comfort | Road Holding | Comfort | Road Holding | Comfort | Road Holding | ||
rms | |||||||
rms | − | ||||||
rms | |||||||
rms | |||||||
avg () | |||||||
avg () | |||||||
avg () | |||||||
avg () | % | ||||||
45 | 27 | 45 | 27 | 45 | 27 | ||
− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguilar-Zamorate, I.S.; Galluzzi, R.; Ibarra, L.; Amati, N.; Soriano, L.A. Analysis of Surface and Interior Permanent Magnet Motor Topologies for Active Electromagnetic Damping Applications. Machines 2023, 11, 721. https://doi.org/10.3390/machines11070721
Aguilar-Zamorate IS, Galluzzi R, Ibarra L, Amati N, Soriano LA. Analysis of Surface and Interior Permanent Magnet Motor Topologies for Active Electromagnetic Damping Applications. Machines. 2023; 11(7):721. https://doi.org/10.3390/machines11070721
Chicago/Turabian StyleAguilar-Zamorate, Irving S., Renato Galluzzi, Luis Ibarra, Nicola Amati, and Luis Arturo Soriano. 2023. "Analysis of Surface and Interior Permanent Magnet Motor Topologies for Active Electromagnetic Damping Applications" Machines 11, no. 7: 721. https://doi.org/10.3390/machines11070721
APA StyleAguilar-Zamorate, I. S., Galluzzi, R., Ibarra, L., Amati, N., & Soriano, L. A. (2023). Analysis of Surface and Interior Permanent Magnet Motor Topologies for Active Electromagnetic Damping Applications. Machines, 11(7), 721. https://doi.org/10.3390/machines11070721