Weight Minimization of Type 2 Composite Pressure Vessel for Fuel Cell Electric Vehicles Considering Mechanical Safety with Kriging Metamodel
Abstract
:1. Introduction
2. Finite Element Analysis of Type 2 Composite Overwrapped Pressure Vessel
2.1. Type 2 Composite Overwrapped Pressure Vessel Analysis Methodology
2.2. Classical Lamination Theory
2.3. Tsai–Wu Failure Criterion
2.4. Finite Element Analysis
3. Weight Minimization of Type 2 COPV
3.1. Optimal Design Problem Formulation
3.2. Design Sensitivity Analysis and Kriging Metamodel Using Design of Experiments
3.3. Optimization Using Genetic Algorithms
3.4. Optimization Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Almeida, D.; Silvio, C.A.; Kruczan, R. Effects of drivetrain hybridization on fuel economy, performance and costs of a fuel cell hybrid electric vehicle. Int. J. Hydrogen Energy 2021, 46, 39404–39414. [Google Scholar] [CrossRef]
- Andrzej, S.; Pielecha, I.; Cieslik, W. Fuel cell electric vehicle (FCEV) energy flow analysis in real driving conditions (RDC). Energies 2021, 14, 5018. [Google Scholar]
- Cano, Z.P.; Banham, D.; Ye, S.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289. [Google Scholar] [CrossRef]
- Toktaş-Palut, P. The fuel cell electric vehicle market growth: Analyses of contracts and government incentives. Comput. Ind. Eng. 2023, 176, 108988. [Google Scholar] [CrossRef]
- Hwang, H.J.; Lee, Y.H.; Seo, I.; Chung, Y. Successful pathway for locally driven fuel cell electric vehicle adoption: Early evidence from South Korea. Int. J. Hydrogen Energy 2021, 46, 21764–21776. [Google Scholar] [CrossRef]
- Joshi, A.; Sharma, R.; Baral, B. Comparative life cycle assessment of conventional combustion engine vehicle, battery electric vehicle and fuel cell electric vehicle in Nepal. J. Clean. Prod. 2022, 379, 134407. [Google Scholar] [CrossRef]
- Bødal, E.F.; Mallapragada, D.; Botterud, A.; Korpås, M. Decarbonization synergies from joint planning of electricity and hydrogen production: A Texas case study. Int. J. Hydrogen Energy 2020, 45, 32899–32915. [Google Scholar] [CrossRef]
- Samsatli, S.; Staffell, I.; Samsatli, N.J. Optimal design and operation of integrated wind-hydrogen-electricity networks for decarbonizing the domestic transport sector in Great Britain. Int. J. Hydrogen Energy 2016, 41, 447–475. [Google Scholar] [CrossRef]
- Dumbrava, I.D.; Cormos, C.C. Techno-economical evaluations of decarbonized hydrogen production based on direct biogas conversion thermos-chemical looping cycles. Int. J. Hydrogen Energy 2021, 46, 23149–23163. [Google Scholar] [CrossRef]
- Lee, J.J.; Kim, D.H.; Choi, Y.J.; Kim, C.W.; Lee, S.S. Design Optimization of Type 2 Composite Overwrapped Pressure Vessel for Fuel Cell Vehicle using Finite Element Method. Trans. Korean Soc. Mech. Eng. 2020, 44, 241–246. [Google Scholar] [CrossRef]
- Alcantar, V.; Ledesma, S.; Aceves, S.M.; Ledesma, M.; Saldana, A. Optimization of type III pressure vessels using genetic algorithm and simulated annealing. Int. J. Hydrogen Energy 2017, 42, 20125–20132. [Google Scholar] [CrossRef]
- Jeong, S.M.; Hwang, T.K. Research on Laminate Design Parameters to Maximize Performance Index of Composite Pressure Vessel. J. Korean Soc. Propuls. Eng. 2018, 22, 21–27. [Google Scholar] [CrossRef]
- Barthélémy, H.; Weber, M.; Barbier, F. Hydrogen storage: Recent improvements and industrial perspectives. Int. J. Hydrogen Energy 2017, 42, 7254–7262. [Google Scholar] [CrossRef]
- Kang, H.; He, P.; Zhang, C.; Dai, Y.; Lv, H.; Zhang, M.; Yang, D. Stress–strain and burst failure analysis of fiber wound composite material high-pressure vessel. Polym. Polym. Compos. 2021, 29, 1291–1303. [Google Scholar] [CrossRef]
- Annaratone, D. Pressure Vessel Design; Springer: Berlin, Germany, 2007; pp. 12–49. [Google Scholar]
- Son, D.S.; Hong, J.H.; Chang, S.H. Determination of the autofrettage pressure and estimation of material failures of a Type III hydrogen pressure vessel by using finite element analysis. Int. J. Hydrogen Energy 2012, 37, 12771–12781. [Google Scholar] [CrossRef]
- Raponi, E.; Fiumarella, D. Experimental analysis and numerical optimization of a thermoplastic composite in crashworthiness. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1038, 012030. [Google Scholar] [CrossRef]
- Mian, H.H.; Wang, G.; Dar, U.A.; Zhang, W. Optimization of composite material system and lay-up to achieve minimum weight pressure vessel. Appl. Compos. Mater. 2013, 20, 873–889. [Google Scholar] [CrossRef]
- Sulaiman, S.; Borazjani, S.; Tang, S.H. Finite element analysis of filament-wound composite pressure vessel under internal pressure. IOP Conf. Ser. Mater. Sci. Eng. 2013, 50, 012061. [Google Scholar] [CrossRef]
- Lin, D.T.W.; Hsieh, J.C.; Chindakham, N. Optimal design of a composite laminate hydrogen storage vessel. Int. J. Energy Res. 2013, 37, 761–768. [Google Scholar] [CrossRef]
- Alemida, J.H.S., Jr.; Faria, H.; Marques, A.T.; Amico, S.C. Load sharing ability of the liner in type III composite pressure vessels under internal pressure. J. Reinf. Plast. Compos. 2014, 33, 2274–2286. [Google Scholar] [CrossRef]
- Leh, D.; Magneville, B.; Saffré, P.; Francescato, P.; Arrieux, R.; Villalonga, S. Optimisation of 700 bar type IV hydrogen pressure vessel considering composite damage and dome multi-sequencing. Int. J. Hydrogen Energy 2015, 40, 13215–13230. [Google Scholar] [CrossRef]
- Alcántar, V.; Aceves, S.M.; Ledesma, E.; Ledesma, S.; Aguilera, E. Optimization of Type 4 composite pressure vessels using genetic algorithms and simulated annealing. Int. J. Hydrogen Energy 2017, 42, 15770–15781. [Google Scholar] [CrossRef]
- Kim, C.U.; Hong, C.S.; Kim, C.G.; Kim, J.Y. Optimal design of filament wound type 3 tanks under internal pressure using a modified genetic algorithm. Compos. Struct. 2005, 71, 16–25. [Google Scholar] [CrossRef]
- Paknahad, A.; Fathi, A.; Goudarzi, A.M.; Nourani, R. Optimum head design of filament wound composite pressure vessels using a hybrid model of FE analysis and inertia weight PSO algorithm. Int. J. Mater. Form. 2014, 9, 49–57. [Google Scholar] [CrossRef]
- Ban, B.; Sripetic, S. Systematic metamodel-based optimization study of synchronous reluctance machine rotor barrier topologies. Machines 2022, 10, 712. [Google Scholar] [CrossRef]
- Vafaeesefat, A. Optimization of composite pressure vessels with metal liner by adaptive response surface method. J. Mech. Sci. Technol. 2011, 25, 2811–2816. [Google Scholar] [CrossRef]
- The International BMW Website. Available online: https://www.bmw.com/en/innovation/how-hydrogen-fuel-cell-cars-work.html (accessed on 28 November 2023).
- Kim, C.W.; Hwang, W.B.; Park, H.C.; Han, K.S. Stacking sequence optimization of laminated plates. Compos. Struct. 1997, 39, 283–288. [Google Scholar] [CrossRef]
- Kim, C.W.; Song, S.R.; Hwang, W.B.; Park, H.C.; Han, K.S. On the failure indices of quadratic failure criteria for optimal stacking sequence design of laminated plate. Appl. Compos. Mater. 1994, 1, 81–85. [Google Scholar] [CrossRef]
- Zhu, W.G.; Meng, Z.J.; Huang, J.; He, W. Optimization design for laminated composite structure based on kriging model. Appl. Mech. Mater. 2012, 217, 179–183. [Google Scholar] [CrossRef]
- Adeli, H.; Cheng, N.T. Integrated genetic algorithm for optimization of space structures. J. Aerosp. Eng. 1993, 6, 315–328. [Google Scholar] [CrossRef]
Steel 201 | CFRP | |
---|---|---|
Longitudinal young’s modulus (E1) | 210 GPa | 142 GPa |
Transverse young’s modulus (E2) | - | 10.8 GPa |
Poisson’s ratio (ν12) | 0.3 | 0.27 |
Shear modulus XY (G12), XZ (G2Z) | 76.9 GPa | 5.5 GPa |
Shear modulus YZ (G1Z) | - | 3.9 GPa |
Longitudinal tensile strength (Xt) | 0.311 GPa | 1.568 GPa |
Transverse tensile strength (Yt) | - | 1.341 GPa |
Design Variables | Boundary |
---|---|
Steel liner thickness (mm) | |
Ply thickness (mm) | |
Ply orientation (degree) | |
Number of plies (ea) |
Response | RMSE (Training) | RMSE (Test) |
---|---|---|
Weight | 0.00023 | |
Tsai–Wu failure index | 0.00197 | |
Von Mises stress | 0.00071 |
Initial Value | Optimal Value | Rate of Change | ||
---|---|---|---|---|
Design variables | Steel liner thickness (mm) | 3.4 | 2.94 | −15.64% |
Ply thickness (mm) | 1 | 0.5 | −100% | |
Ply orientation (degree) | 30 | 32.22 | 7.4% | |
Number of plies (ea) | 10 | 15 | 50 % | |
Objective function | Weight (kg) | 81.62 | 59.93 | −26.57% |
Constraints | Tsai–Wu failure index in composite layer | 0.808 | 0.932 | 15.35% |
Max. von Mises stress in steel liner (MPa) | 420.2 | 647.3 | 54.05% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, J.; Lee, H.; Kim, C.-W. Weight Minimization of Type 2 Composite Pressure Vessel for Fuel Cell Electric Vehicles Considering Mechanical Safety with Kriging Metamodel. Machines 2024, 12, 132. https://doi.org/10.3390/machines12020132
An J, Lee H, Kim C-W. Weight Minimization of Type 2 Composite Pressure Vessel for Fuel Cell Electric Vehicles Considering Mechanical Safety with Kriging Metamodel. Machines. 2024; 12(2):132. https://doi.org/10.3390/machines12020132
Chicago/Turabian StyleAn, Jaewook, Hamin Lee, and Chang-Wan Kim. 2024. "Weight Minimization of Type 2 Composite Pressure Vessel for Fuel Cell Electric Vehicles Considering Mechanical Safety with Kriging Metamodel" Machines 12, no. 2: 132. https://doi.org/10.3390/machines12020132
APA StyleAn, J., Lee, H., & Kim, C. -W. (2024). Weight Minimization of Type 2 Composite Pressure Vessel for Fuel Cell Electric Vehicles Considering Mechanical Safety with Kriging Metamodel. Machines, 12(2), 132. https://doi.org/10.3390/machines12020132