Collaborative Behavior for Non-Conventional Custom-Made Robotics: A Cable-Driven Parallel Robot Application
Abstract
:1. Introduction
1.1. New Trends in Non-Conventional Industrial Robots
1.2. Conventional Collaborative Automation Architectures
1.3. Collaborative for Non-Standard Robotics: Collaborative CDPRs
2. General-Purpose Motion Control and Safety Resources to Implement Custom-Made Industrial Robots: The CDPR Case
2.1. Cable-Driven Parallel Robots
2.2. Safety Standards for Collaborative Robotics
2.3. Safety Architectures and Collaborative Operations: Collaborative Robotics
- STO: Safe Torque Off
- SLS: Safely Limited Speed
- SLT: Safely Limited Torque
- SLI: Safely Limited Increments
3. CDPR Toolpath Control with Standard Industrial Motion Control Resources
4. Collaborative Behavior Implementation Strategy with General-Purpose Devices
4.1. Case 1: Regular Toolpath without Limitations
4.2. Case 2: Simultaneous Application of SLS and Toolpath Override
4.3. Case 3: New Pre-Warning Zone for Smooth Application of Toolpath Speed Override
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unnikrishnan, N.; Hull, K.; Nicolson, E. A Review of Challenges in Integrating Robot and Motion Control Into a Single System. In Proceedings of the Volume 14: Emerging Technologies; Materials: Genetics to Structures, Tampa, FL, USA, 3–9 November 2017; Safety Engineering and Risk Analysis; American Society of Mechanical Engineers: Tampa, FL, USA, 2017; p. V014T07A017. [Google Scholar]
- Wang, H.; Tang, X.; Song, B.; Wang, X. A Novel Architecture of the Embedded Computer Numerical Control System Based on PLCopen Standard. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2014, 228, 595–605. [Google Scholar] [CrossRef]
- Van Der Wal, E.; Simon, R. Recent Developments in Industrial Control Programming. IFAC Proc. Vol. 2006, 39, 90–94. [Google Scholar] [CrossRef]
- Quest TechnoMarketing. The Future of the Servo Use until 2020 in the German Machinery Industry; Quest TechnoMarketing: London, UK, 2017; p. 198. [Google Scholar]
- Santaliana, D.; Calloni, D.; Laterza, V.; Zanelli, R. Final Report about Identification of Skills and Needs in the Mechatronics and Metallurgical Sectors’ Industries in the 5 Countries; MEMEVET project reports; Erasmus+ Programme of the European Union: Pordenone, Italy, 2019. [Google Scholar]
- PLCopen. Function Blocks for Motion Control: Part 4—Coordinated Motion; PLCopen Technical Committee 2—Task Force: Zaltbommel, The Netherlands, 2008. [Google Scholar]
- Contreras, J.; Rubio, J.; Martínez, A. PLC Based Control of Robots Using PLCopen Motion Control Specifications. In Advances in Automation and Robotics Research; Moreno, H.A., Carrera, I.G., Ramírez-Mendoza, R.A., Baca, J., Banfield, I.A., Eds.; Lecture Notes in Networks and Systems; Springer International Publishing: Cham, Switzerland, 2022; Volume 347, pp. 109–120. ISBN 978-3-030-90032-8. [Google Scholar]
- Pott, A.; Mütherich, H.; Kraus, W.; Schmidt, V.; Miermeister, P.; Verl, A. IPAnema: A family of Cable-Driven Parallel Robots for Industrial Applications. In Cable-Driven Parallel Robots; Bruckmann, T., Pott, A., Eds.; Mechanisms and Machine Science; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 2013; Volume 12, pp. 119–134. ISBN 978-3-642-31987-7. [Google Scholar]
- Sancak, K.V.; Bayraktaroglu, Z.Y. Nonlinear Computed Torque Control of 6-Dof Parallel Manipulators. Int. J. Control Autom. Syst. 2022, 20, 2297–2311. [Google Scholar] [CrossRef]
- PLCopen. PLCopen Safety Software. Part 1: Concepts and Function Blocks; Technical Specification; PLCopen: Gorinchem, The Netherlands, 2023. [Google Scholar]
- ISO 12100:2010; Safety of Machinery. General Principles for Design. Risk Assessment and Risk Reduction. International Organization for Standardization: Geneva, Switzerland, 2010.
- Platbrood, F.; Gornemann, O. Safe Robotics—Safety in Collaborative Robot Systems; SICK AG: Waldkirch, Germany, 2018. [Google Scholar]
- ISO 13849-1:2023; Safety of Machinery. Safety-Related Parts of Control Systems. Part 1: General Principles for Design. International Organization for Standardization: Geneva, Switzerland, 2023.
- IEC 62061:2021; Safety of Machinery—Functional Safety of Safety-Related Control Systems. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- Breque, M.; De Nul, L.; Petridis, A. Others Industry 5.0: Towards a Sustainable, Human-Centric and Resilient European Industry. Luxemb. LU Eur. Comm. Dir.-Gen. Res. Innov. 2021. [Google Scholar] [CrossRef]
- Aheleroff, S.; Huang, H.; Xu, X.; Zhong, R.Y. Toward Sustainability and Resilience with Industry 4.0 and Industry 5.0. Front. Manuf. Technol. 2022, 2, 951643. [Google Scholar] [CrossRef]
- Yeo, S.H.; Yang, G.; Lim, W.B. esign and Analysis of Cable-Driven Manipulators with Variable Stiffness. Mech. Mach. Theory 2013, 69, 230–244. [Google Scholar] [CrossRef]
- Caro, S.; Merlet, J.-P. Failure Analysis of a Collaborative 4-1 Cable-Driven Parallel Robot. In New Trends in Mechanism and Machine Science; Pisla, D., Corves, B., Vaida, C., Eds.; Mechanisms and Machine Science; Springer International Publishing: Cham, Switzerland, 2020; Volume 89, pp. 440–447. ISBN 978-3-030-55060-8. [Google Scholar]
- Cui, Z.; Tang, X.; Hou, S.; Sun, H. Research on Controllable Stiffness of Redundant Cable-Driven Parallel Robots. IEEE/ASME Trans. Mechatron. 2018, 23, 2390–2401. [Google Scholar] [CrossRef]
- Métillon, M.; Charron, C.; Subrin, K.; Caro, S. Stiffness and Transparency of a Collaborative Cable-Driven Parallel Robot. In Advances in Robot Kinematics 2022; Altuzarra, O., Kecskeméthy, A., Eds.; Springer Proceedings in Advanced Robotics; Springer International Publishing: Cham, Switzerland, 2022; Volume 24, pp. 101–109. ISBN 978-3-031-08139-2. [Google Scholar]
- Meziane, R.; Cardou, P.; Otis, M.J.-D. Cable Interference Control in Physical Interaction for Cable-Driven Parallel Mechanisms. Mech. Mach. Theory 2019, 132, 30–47. [Google Scholar] [CrossRef]
- Rousseau, T.; Chevallereau, C.; Caro, S. Human-Cable Collision Detection with a Cable-Driven Parallel Robot. Mechatronics 2022, 86, 102850. [Google Scholar] [CrossRef]
- Métillon, M.; Charron, C.; Subrin, K.; Caro, S. Performance and Interaction Quality Variations of a Collaborative Cable-Driven Parallel Robot. Mechatronics 2022, 86, 102839. [Google Scholar] [CrossRef]
- Clavel, R. Device for Displacing and Positioning an Element in Space. Int. Pat. No WO 1985, 87, 03528. [Google Scholar]
- Stewart, D. A Platform with Six Degrees of Freedom. Proc. Inst. Mech. Eng. 1965, 180, 371–386. [Google Scholar] [CrossRef]
- Cappel, K.L. Motion Simulator. United States Patent US 3,295,224, 7 December 1964. [Google Scholar]
- Landsberger, S.E. Design and Construction of a Cable-Controlled, Parallel Link Manipulator. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, MA, USA, 1984. [Google Scholar]
- González-Rodríguez, A.; Martín-Parra, A.; Juárez-Pérez, S.; Rodríguez-Rosa, D.; Moya-Fernández, F.; Castillo-García, F.J.; Rosado-Linares, J. Dynamic Model of a Novel Planar Cable Driven Parallel Robot with a Single Cable Loop. Actuators 2023, 12, 200. [Google Scholar] [CrossRef]
- Zarebidoki, M.; Dhupia, J.S.; Xu, W. A Review of Cable-Driven Parallel Robots: Typical Configurations, Analysis Techniques, and Control Methods. IEEE Robot. Autom. Mag. 2022, 29, 89–106. [Google Scholar] [CrossRef]
- Barbazza, L.; Oscari, F.; Minto, S.; Rosati, G. Trajectory Planning of a Suspended Cable Driven Parallel Robot with Reconfigurable End Effector. Robot. Comput.-Integr. Manuf. 2017, 48, 1–11. [Google Scholar] [CrossRef]
- Qian, S.; Zi, B.; Shang, W.-W.; Xu, Q.-S. A Review on Cable-driven Parallel Robots. Chin. J. Mech. Eng. 2018, 31, 66. [Google Scholar] [CrossRef]
- Zarebidoki, M. The Effects of Air Drag Force on the Efficiency and Control of lightweight higher Speed Robotics. In Proceedings of the 2021 27th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), Shanghai, China, 26–28 November 2021; IEEE: Shanghai, China, 2021; pp. 400–404. [Google Scholar]
- Han, G.; Li, J.; Chen, Y.; Wang, S.; Chen, H. Dynamic Modeling and Motion Control Strategy of Cable-Driven Cleaning Robot for Ship Cargo Hold. J. Mar. Sci. Eng. 2023, 11, 87. [Google Scholar] [CrossRef]
- Tho, T.P.; Thinh, N.T. Using a Cable-Driven Parallel Robot with Applications in 3D Concrete Printing. Appl. Sci. 2021, 11, 563. [Google Scholar] [CrossRef]
- Khajepour, A.; Mendez, S.T.; Rushton, M.; Jamshidianfar, H.; Qi, R.; Pazooki, A.; Durali, L.; Soltani, A. A Warehousing Robot: From Concept to Reality. In Cable-Driven Parallel Robots; Caro, S., Pott, A., Bruckmann, T., Eds.; Mechanisms and Machine Science; Springer Nature Switzerland: Cham, Switzerland, 2023; Volume 132, pp. 397–406. ISBN 978-3-031-32321-8. [Google Scholar]
- Duan, J.; Shao, Z.; Liu, H.; Zhang, Z.; Wang, Y.; Zhao, H. Design Analysis of a Cable-Driven Parallel Robot with Parallel Cables for Ship Side Painting. In Proceedings of the 2023 8th International Conference on Automation, Control and Robotics Engineering (CACRE), Hong Kong, China, 13–15 July 2023; IEEE: Hong Kong, China, 2023; pp. 209–215. [Google Scholar]
- Phuoc Tho, T.; Truong Thinh, N. Evaluating Cable Tension Distributions of CDPR for Virtual Reality Motion Simulator. Mech. Based Des. Struct. Mach. 2023, 1–19. [Google Scholar] [CrossRef]
- Ben Hamida, I.; Laribi, M.A.; Mlika, A.; Romdhane, L.; Zeghloul, S.; Carbone, G. Multi-Objective Optimal Design of a Cable Driven Parallel Robot for Rehabilitation Tasks. Mech. Mach. Theory 2021, 156, 104141. [Google Scholar] [CrossRef]
- Holland, C.S.; Cannon, D.J. Cable Array Robot for Material Handling. United States Patent US 6,826,452, 30 November 2004. [Google Scholar]
- Zhang, Z.; Shao, Z.; Wang, L. ptimization and Implementation of a High-Speed 3-DOFs Translational Cable-Driven Parallel Robot. Mech. Mach. Theory 2020, 145, 103693. [Google Scholar] [CrossRef]
- Matthias, B.; Kock, S.; Jerregard, H.; Kallman, M.; Lundberg, I. Safety of collaborative industrial robots: Certification possibilities for a collaborative assembly robot concept. In Proceedings of the 2011 IEEE International Symposium on Assembly and Manufacturing (ISAM), Tampere, Finland, 25–27 May 2011; IEEE: Tampere, Finland, 2011; pp. 1–6. [Google Scholar]
- Povse, B.; Koritnik, D.; Kamnik, R.; Bajd, T.; Munih, M. Industrial robot and human operator collision. In Proceedings of the 2010 IEEE International Conference on Systems, Man and Cybernetics, Istanbul, Turkey, 10–13 October 2010; IEEE: Istanbul, Turkey, 2010; pp. 2663–2668. [Google Scholar]
- El Zaatari, S.; Marei, M.; Li, W.; Usman, Z. Cobot Programming for Collaborative Industrial Tasks: An Overview. Robot. Auton. Syst. 2019, 116, 162–180. [Google Scholar] [CrossRef]
- Knudsen, M.; KaiVo-Oja, J. Collaborative Robots: Frontiers of Current Literature. J. Intell. Syst. Theory Appl. 2020, 3, 13–20. [Google Scholar] [CrossRef]
- ISO 10218-1:2011; Robots and Robotic Devices—Safety Requirements for Industrial Robots—Part 1: Robots. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO 10218-2:2011; Robots and Robotic Devices—Safety Requirements for Industrial Robots—Part 2: Robot Systems and Integration. International Organization for Standardization: Geneva, Switzerland, 2011.
- ISO/TS 15066:2016; Robots and Robotic Devices–Collaborative Robots. International Organization for Standardization: Geneva, Switzerland, 2016.
- Lucci, N.; Lacevic, B.; Zanchettin, A.M.; Rocco, P. Combining Speed and Separation Monitoring with Power and Force Limiting for Safe Collaborative Robotics Applications. IEEE Robot. Autom. Lett. 2020, 5, 6121–6128. [Google Scholar] [CrossRef]
- Vysocky, A.; Novak, P. Human—Robot Collaboration in Industry. MM Sci. J. 2016, 2016, 903–906. [Google Scholar] [CrossRef]
- Mariscal Saldaña, M.Á.; González Pérez, J.; Khalid, A.; Gutiérrez Llorente, J.M.; García Herrero, S. Risks management and cobots. Identifying critical variables. In Proceedings of the 29th European Safety and Reliability Conference (ESREL), Hannover, Germany, 22–26 September 2019. [Google Scholar] [CrossRef]
- Villani, V.; Pini, F.; Leali, F.; Secchi, C. Survey on Human–Robot Collaboration in Industrial Settings: Safety, Intuitive Interfaces and Applications. Mechatronics 2018, 55, 248–266. [Google Scholar] [CrossRef]
- Bertelsen, Á.; Scorza, D.; Cortés, C.; Oñativia, J.; Escudero, Á.; Sánchez, E.; Presa, J. Collaborative Robots for Surgical Applications. In ROBOT 2017: Third Iberian Robotics Conference; Ollero, A., Sanfeliu, A., Montano, L., Lau, N., Cardeira, C., Eds.; Advances in Intelligent Systems and Computing; Springer International Publishing: Cham, Switzerland, 2018; Volume 694, pp. 524–535. ISBN 978-3-319-70835-5. [Google Scholar]
- Gherman, B.; Burz, A.; Jucan, D.; Bara, F.; Carbone, G.; Pisla, D. Upper Limb Rehabilitation with A Collaborative Robot. ACTA Tech. Napoc.—Ser. Appl. Math. Mech. Eng. 2019, 62, 323–330. [Google Scholar]
- Matthias, B.; Reisinger, T. Example Application of ISO/TS 15066 to a Collaborative Assembly Scenario. In Proceedings of the ISR 2016: 47st International Symposium on Robotics, Munich, Germany, 21–22 June 2016; pp. 1–5. [Google Scholar]
- Magrini, E.; Ferraguti, F.; Ronga, A.J.; Pini, F.; De Luca, A.; Leali, F. Human-Robot Coexistence and Interaction in Open Industrial Cells. Robot. Comput.-Integr. Manuf. 2020, 61, 101846. [Google Scholar] [CrossRef]
- Svarny, P.; Rozlivek, J.; Rustler, L.; Hoffmann, M. 3D Collision-Force-Map for Safe Human-Robot Collaboration. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; IEEE: Xi’an, China, 2021; pp. 3829–3835. [Google Scholar]
- Marvel, J.A. Performance Metrics of Speed and Separation Monitoring in Shared Workspaces. IEEE Trans. Autom. Sci. Eng. 2013, 10, 405–414. [Google Scholar] [CrossRef]
- Lasota, P.A.; Rossano, G.F.; Shah, J.A. Toward safe close-proximity human-robot interaction with standard industrial robots. In Proceedings of the 2014 IEEE International Conference on Automation Science and Engineering (CASE), New Taipei, Taiwan, 18–22 August 2014; IEEE: Taipei, Taiwan, 2014; pp. 339–344. [Google Scholar]
- Zanchettin, A.M.; Ceriani, N.M.; Rocco, P.; Ding, H.; Matthias, B. Safety in Human-Robot Collaborative Manufacturing Environments: Metrics and Control. IEEE Trans. Autom. Sci. Eng. 2016, 13, 882–893. [Google Scholar] [CrossRef]
- Byner, C.; Matthias, B.; Ding, H. Dynamic Speed and Separation Monitoring for Collaborative Robot Applications – Concepts and Performance. Robot. Comput.-Integr. Manuf. 2019, 58, 239–252. [Google Scholar] [CrossRef]
- Himmelsbach, U.B.; Wendt, T.M.; Hangst, N.; Gawron, P.; Stiglmeier, L. Human–Machine Differentiation in Speed and Separation Monitoring for Improved Efficiency in Human–Robot Collaboration. Sensors 2021, 21, 7144. [Google Scholar] [CrossRef]
- Costanzo, M.; De Maria, G.; Lettera, G.; Natale, C. A Multimodal Approach to Human Safety in Collaborative Robotic Workcells. IEEE Trans. Autom. Sci. Eng. 2022, 19, 1202–1216. [Google Scholar] [CrossRef]
- Karagiannis, P.; Kousi, N.; Michalos, G.; Dimoulas, K.; Mparis, K.; Dimosthenopoulos, D.; Tokçalar, Ö.; Guasch, T.; Gerio, G.P.; Makris, S. Adaptive Speed and Separation Monitoring Based on Switching of Safety Zones for Effective Human Robot Collaboration. Robot. Comput.-Integr. Manuf. 2022, 77, 102361. [Google Scholar] [CrossRef]
- IEC 61800-5-2:2016; Adjustable Speed Electrical Power Drive Systems—Part 5-2: Safety Requirements—Functional. International Electrotechnical Commission: Geneva, Switzerland, 2016.
- IEC 60204-1:2016; Safety of Machinery—Electrical Equipment of Machines—Part 1: General Requirements. International Electrotechnical Commission: Geneva, Switzerland, 2021.
- OMRON Corporation. NJ Robotics CPU Unit; NJ_series; OMRON Corporation: Kyoto, Japan, 2022. [Google Scholar]
- Siemens AG. S7-1500T Kinematics functions V6.0 as of STEP 7 V17; S7-1500T Motion Control; Siemens: Nürnberg, Germany, 2021. [Google Scholar]
- Beckhoff Automation GmbH & Co. KG. TwinCAT 3|Kinematic Transformation. TF5110–TF5113; Beckhoff Automation GmbH & Co. KG: Verl, Germany, 2022; pp. 36–42. [Google Scholar]
- Beckhoff Automation GmbH & Co. KG. TwinCAT|Automation Software. Available online: https://www.beckhoff.com/es-es/products/automation/twincat/ (accessed on 22 September 2023).
N | X (mm) | Y (mm) | Z (mm) | Velocity (mm/s) |
---|---|---|---|---|
1 | −150 | −150 | 400 | - |
2 | −150 | −150 | 700 | 100 |
3 | −100 | −150 | 800 | 100 |
4 | 0 | 200 | 800 | 200 |
5 | 50 | 200 | 700 | 100 |
6 | 50 | 200 | 400 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garrido, J.; Silva-Muñiz, D.; Riveiro, E.; Rivera-Andrade, J.; Sáez, J. Collaborative Behavior for Non-Conventional Custom-Made Robotics: A Cable-Driven Parallel Robot Application. Machines 2024, 12, 91. https://doi.org/10.3390/machines12020091
Garrido J, Silva-Muñiz D, Riveiro E, Rivera-Andrade J, Sáez J. Collaborative Behavior for Non-Conventional Custom-Made Robotics: A Cable-Driven Parallel Robot Application. Machines. 2024; 12(2):91. https://doi.org/10.3390/machines12020091
Chicago/Turabian StyleGarrido, Julio, Diego Silva-Muñiz, Enrique Riveiro, Josué Rivera-Andrade, and Juan Sáez. 2024. "Collaborative Behavior for Non-Conventional Custom-Made Robotics: A Cable-Driven Parallel Robot Application" Machines 12, no. 2: 91. https://doi.org/10.3390/machines12020091
APA StyleGarrido, J., Silva-Muñiz, D., Riveiro, E., Rivera-Andrade, J., & Sáez, J. (2024). Collaborative Behavior for Non-Conventional Custom-Made Robotics: A Cable-Driven Parallel Robot Application. Machines, 12(2), 91. https://doi.org/10.3390/machines12020091