Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles
Abstract
:1. Introduction
2. Exoskeleton Architecture
3. Methods
3.1. Simulation Analysis
3.2. Experimental Validation
4. Results and Discussion
4.1. Simulation Results
4.2. Experimental Test Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bai, S.; Christensen, S.; Islam, M.R.U. An Upper-Body Exoskeleton with a Novel Shoulder Mechanism for Assistive Applications. In Proceedings of the 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), Munich, Germany, 3–7 July 2017; pp. 1041–1046. [Google Scholar]
- Ebrahimi, A. Stuttgart Exo-Jacket: An Exoskeleton for Industrial Upper Body Applications. In Proceedings of the 2017 10th International Conference on Human System Interactions (HSI), Ulsan, Republic of Korea, 17–19 July 2017; pp. 258–263. [Google Scholar]
- Mauri, A.; Lettori, J.; Fusi, G.; Fausti, D.; Mor, M.; Braghin, F.; Legnani, G.; Roveda, L. Mechanical and Control Design of an Industrial Exoskeleton for Advanced Human Empowering in Heavy Parts Manipulation Tasks. Robotics 2019, 8, 65. [Google Scholar] [CrossRef]
- Otten, B.M.; Weidner, R.; Argubi-Wollesen, A. Evaluation of a Novel Active Exoskeleton for Tasks at or Above Head Level. IEEE Robot. Autom. Lett. 2018, 3, 2408–2415. [Google Scholar] [CrossRef]
- Maurice, P.; Camernik, J.; Gorjan, D.; Schirrmeister, B.; Bornmann, J.; Tagliapietra, L.; Latella, C.; Pucci, D.; Fritzsche, L.; Ivaldi, S.; et al. Objective and Subjective Effects of a Passive Exoskeleton on Overhead Work. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 152–164. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.-M.; Le, D.K.L.; Lin, W.-C. Evaluation of a Passive Upper-Limb Exoskeleton Applied to Assist Farming Activities in Fruit Orchards. Appl. Sci. 2021, 11, 757. [Google Scholar] [CrossRef]
- De Vries, A.; Murphy, M.; Könemann, R.; Kingma, I.; De Looze, M. The Amount of Support Provided by a Passive Arm Support Exoskeleton in a Range of Elevated Arm Postures. IISE Trans. Occup. Ergon. Hum. Factors 2019, 7, 311–321. [Google Scholar] [CrossRef]
- Kozinc, Ž.; Babič, J.; Šarabon, N. Human Pressure Tolerance and Effects of Different Padding Materials with Implications for Development of Exoskeletons and Similar Devices. Appl. Ergon. 2021, 93, 103379. [Google Scholar] [CrossRef] [PubMed]
- Graven-Nielsen, T.; Vaegter, H.B.; Finocchietti, S.; Handberg, G.; Arendt-Nielsen, L. Assessment of Musculoskeletal Pain Sensitivity and Temporal Summation by Cuff Pressure Algometry: A Reliability Study. Pain 2015, 156, 2193–2202. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Nussbaum, M.A.; Mokhlespour Esfahani, M.I.; Alemi, M.M.; Jia, B.; Rashedi, E. Assessing the Influence of a Passive, Upper Extremity Exoskeletal Vest for Tasks Requiring Arm Elevation: Part II—“Unexpected” Effects on Shoulder Motion, Balance, and Spine Loading. Appl. Ergon. 2018, 70, 323–330. [Google Scholar] [CrossRef] [PubMed]
- Maurice, P.; Čamernik, J.; Gorjan, D.; Schirrmeister, B.; Bornmann, J.; Tagliapietra, L.; Latella, C.; Pucci, D.; Fritzsche, L.; Ivaldi, S.; et al. Evaluation of PAEXO, a Novel Passive Exoskeleton for Overhead Work. Comput. Methods Biomech. Biomed. Eng. 2019, 22, S448–S450. [Google Scholar] [CrossRef]
- Kim, S.; Nussbaum, M.A.; Mokhlespour Esfahani, M.I.; Alemi, M.M.; Alabdulkarim, S.; Rashedi, E. Assessing the Influence of a Passive, Upper Extremity Exoskeletal Vest for Tasks Requiring Arm Elevation: Part I—“Expected” Effects on Discomfort, Shoulder Muscle Activity, and Work Task Performance. Appl. Ergon. 2018, 70, 315–322. [Google Scholar] [CrossRef]
- Du, Z.; Yan, Z.; Huang, T.; Bai, O.; Huang, Q.; Zhang, T.; Han, B. Development and Experimental Validation of a Passive Exoskeletal Vest. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1941–1950. [Google Scholar] [CrossRef] [PubMed]
- Yin, P.; Yang, L.; Qu, S.; Wang, C. Effects of a Passive Upper Extremity Exoskeleton for Overhead Tasks. J. Electromyogr. Kinesiol. 2020, 55, 102478. [Google Scholar] [CrossRef] [PubMed]
- Hyun, D.J.; Bae, K.; Kim, K.; Nam, S.; Lee, D. A Light-Weight Passive Upper Arm Assistive Exoskeleton Based on Multi-Linkage Spring-Energy Dissipation Mechanism for Overhead Tasks. Robot. Auton. Syst. 2019, 122, 103309. [Google Scholar] [CrossRef]
- Spada, S.; Ghibaudo, L.; Gilotta, S.; Gastaldi, L.; Cavatorta, M.P. Investigation into the Applicability of a Passive Upper-Limb Exoskeleton in Automotive Industry. Procedia Manuf. 2017, 11, 1255–1262. [Google Scholar] [CrossRef]
- Bosch, T.; Van Eck, J.; Knitel, K.; De Looze, M. The Effects of a Passive Exoskeleton on Muscle Activity, Discomfort and Endurance Time in Forward Bending Work. Appl. Ergon. 2016, 54, 212–217. [Google Scholar] [CrossRef]
- Theurel, J.; Desbrosses, K.; Roux, T.; Savescu, A. Physiological Consequences of Using an Upper Limb Exoskeleton during Manual Handling Tasks. Appl. Ergon. 2018, 67, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Sylla, N.; Bonnet, V.; Colledani, F.; Fraisse, P. Ergonomic Contribution of ABLE Exoskeleton in Automotive Industry. Int. J. Ind. Ergon. 2014, 44, 475–481. [Google Scholar] [CrossRef]
- Pacifico, I.; Scano, A.; Guanziroli, E.; Moise, M.; Morelli, L.; Chiavenna, A.; Romo, D.; Spada, S.; Colombina, G.; Molteni, F.; et al. An Experimental Evaluation of the Proto-MATE: A Novel Ergonomic Upper-Limb Exoskeleton to Reduce Workers’ Physical Strain. IEEE Robot. Automat. Mag. 2020, 27, 54–65. [Google Scholar] [CrossRef]
- Huysamen, K.; Bosch, T.; De Looze, M.; Stadler, K.S.; Graf, E.; O’Sullivan, L.W. Evaluation of a Passive Exoskeleton for Static Upper Limb Activities. Appl. Ergon. 2018, 70, 148–155. [Google Scholar] [CrossRef]
- Paterna, M.; Magnetti Gisolo, S.; De Benedictis, C.; Muscolo, G.G.; Ferraresi, C. A Passive Upper-Limb Exoskeleton for Industrial Application Based on Pneumatic Artificial Muscles. Mech. Sci. 2022, 13, 387–398. [Google Scholar] [CrossRef]
- Magnetti Gisolo, S.; Muscolo, G.G.; Paterna, M.; De Benedictis, C.; Ferraresi, C. Feasibility Study of a Passive Pneumatic Exoskeleton for Upper Limbs Based on a McKibben Artificial Muscle. In Advances in Service and Industrial Robotics; Zeghloul, S., Laribi, M.A., Sandoval, J., Eds.; Mechanisms and Machine Science; Springer International Publishing: Cham, Switzerland, 2021; Volume 102, pp. 208–217. ISBN 978-3-030-75258-3. [Google Scholar]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; Wiley: Hoboken, NJ, USA, 2009; ISBN 978-0-470-39818-0. [Google Scholar]
- Hermens, H.J.; Freriks, B. SENIAM 5. The State of the Art on Sensors and Sensor Placement Procedures for Surface ElectroMyoGraphy: A Proposal for Sensor Placement Procedures; Roessingh Research and Development: Enschede, The Netherlands, 1997. [Google Scholar]
- Zhao, L.; Yang, T.; Yang, Y.; Yu, P. A Wearable Upper Limb Exoskeleton for Intuitive Teleoperation of Anthropomorphic Manipulators. Machines 2023, 11, 441. [Google Scholar] [CrossRef]
- Palazzi, E.; Luzi, L.; Dimo, E.; Meneghetti, M.; Vicario, R.; Luzia, R.F.; Vertechy, R.; Calanca, A. An Affordable Upper-Limb Exoskeleton Concept for Rehabilitation Applications. Technologies 2022, 10, 22. [Google Scholar] [CrossRef]
- Zeiaee, A.; Zarrin, R.S.; Eib, A.; Langari, R.; Tafreshi, R. CLEVERarm: A Lightweight and Compact Exoskeleton for Upper-Limb Rehabilitation. IEEE Robot. Autom. Lett. 2022, 7, 1880–1887. [Google Scholar] [CrossRef]
- European Agency for Safety and Health at Work; IKEI; Panteia. Work-Related Musculoskeletal Disorders: Prevalence, Costs and Demographics in the EU; Publications Office: Luxembourg, 2019. [Google Scholar]
- Grieve, J.R.; Dickerson, C.R. Overhead Work: Identification of Evidence-Based Exposure Guidelines. Occup. Ergon. 2008, 8, 53–66. [Google Scholar] [CrossRef]
- Hall, S.J. Basic Biomechanics, 6th ed.; McGraw-Hill: New York, NY, USA, 2012; ISBN 978-0-07-337644-8. [Google Scholar]
Material | E (MPa) | υ | G (MPa) | Sy (MPa) | Sut (MPa) |
---|---|---|---|---|---|
DIN 1.4301 (X5CrNi18-10) | 200,000 | 0.28 | 79,000 | 400 | 600 |
EN AW–6060-t6 | 66,000 | 0.33 | 25,000 | 230 | 230 |
PLA (printing direction) | 2904.2 | 0.292 | 723.34 | 56 | 56 |
PLA (other directions) | 2597.5 | 0.299 | 1010 | 35 | 35 |
Subject | Gender | Height (m) | Weight (kg) | Age (Years) |
---|---|---|---|---|
1 | F | 1.72 | 80 | 31 |
2 | M | 1.60 | 67 | 34 |
Subject | Task | Tool | Shoulder Angle | FREE (°) | EXO (°) |
---|---|---|---|---|---|
1 | Static | Yes | Flexion | 78.8 ± 1.5 | 79.8 ± 0.4 |
Abduction | 9.9 ± 1.1 | 5.3 ± 0.4 | |||
No | Flexion | 83.3 ± 0.9 | 81.6 ± 0.6 | ||
Abduction | 2.3 ± 0.7 | 5.5 ± 0.3 | |||
Dynamic | Yes | Abduction | 12.7 ± 1.1 | 16.1 ± 1.4 | |
Flexion | 15.4 ± 1.7 | 20.7 ± 3.0 | |||
Adduction | 11.8 ± 0.8 | 17.5 ± 1.8 | |||
Extension | 17.8 ±1.4 | 19.2 ± 1.7 | |||
No | Abduction | 13.5 ± 1.3 | 16.7 ± 1.4 | ||
Flexion | 18.3 ± 0.7 | 22.0 ±2.9 | |||
Adduction | 12.1 ± 1.0 | 17.4 ± 1.0 | |||
Extension | 18.2 ± 2.1 | 21.6 ± 2.4 | |||
2 | Static | Yes | Flexion | 85.2 ± 0.7 | 87.7 ± 0.4 |
Abduction | 5.5 ± 0.4 | 7.4 ± 0.3 | |||
No | Flexion | 90.4 ± 0.5 | 88.9 ± 0.2 | ||
Abduction | 2.5 ± 0.3 | 6.0 ± 0.1 | |||
Dynamic | Yes | Abduction | 8.5 ± 5.5 | 16.2 ± 3.5 | |
Flexion | 25.6 ± 4.7 | 32.2 ± 2.5 | |||
Adduction | 13.5 ±2.7 | 19.5 ± 2.4 | |||
Extension | 29.1 ± 3.6 | 34.3 ± 2.8 | |||
No | Abduction | 16.0 ± 3.7 | 26.6 ± 2.7 | ||
Flexion | 36.8 ± 7.6 | 39.3 ± 1.1 | |||
Adduction | 16.9 ± 3.0 | 29.8 ± 2.9 | |||
Extension | 40.4 ± 4.5 | 42.4 ± 3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paterna, M.; De Benedictis, C.; Ferraresi, C. Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles. Machines 2024, 12, 388. https://doi.org/10.3390/machines12060388
Paterna M, De Benedictis C, Ferraresi C. Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles. Machines. 2024; 12(6):388. https://doi.org/10.3390/machines12060388
Chicago/Turabian StylePaterna, Maria, Carlo De Benedictis, and Carlo Ferraresi. 2024. "Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles" Machines 12, no. 6: 388. https://doi.org/10.3390/machines12060388
APA StylePaterna, M., De Benedictis, C., & Ferraresi, C. (2024). Preliminary Testing of a Passive Exoskeleton Prototype Based on McKibben Muscles. Machines, 12(6), 388. https://doi.org/10.3390/machines12060388