Research on Fault Diagnosis Method with Adaptive Artificial Gorilla Troops Optimization Optimized Variational Mode Decomposition and Support Vector Machine Parameters
Abstract
:1. Introduction
2. Improved Artificial Gorilla Force Algorithm Fusing Osprey and Levy Flight (OLGTO)
2.1. The Original Artificial Gorilla Force Algorithm
2.2. Improved Artificial Gorilla Force Algorithm (OLGTO)
2.2.1. Logistic Chaotic Mapping Initializes Gorilla Population
2.2.2. Linearly Decreasing Weight Factors
2.2.3. Integrated Osprey Algorithm Global Exploration Strategy
2.2.4. Levy Flight Strategy
2.3. Improved Algorithm Testing
3. Fault Diagnosis Model Construction
3.1. VMD Fault Feature Extraction
3.2. SVM Classification Model
3.3. OLGTO-VMD-OLGTO-SVM Fault Diagnosis Model
4. Fault Diagnosis Experiment Verification and Analysis
4.1. Data Preparation
4.2. Motor Bearing Fault Diagnosis Experiment
4.3. Fault Diagnosis Experiment of Three-Phase Asynchronous Motor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, C.Y.; Zou, W.; Hu, Z.; Li, H.; Sui, X.; Ma, X.; Yang, F.; Guo, N. Bearing Health State Detection Based on Informer and CNN + Swin Transformer. Machines 2024, 12, 456. [Google Scholar] [CrossRef]
- Gao, Z.W.; Cecati, C.; Ding, S.X. A survey of fault diagnosis and fault-tolerant techniques—Part I: Fault diagnosis with model-based and signal-based approaches. IEEE Trans. Ind. Electron. 2015, 62, 3757–3767. [Google Scholar] [CrossRef]
- Zheng, J.D.; Su, M.; Ying, W.; Tong, J.; Pan, Z. Improved uniform phase empirical mode decomposition and its application in machinery fault diagnosis. Measurement 2021, 179, 109425. [Google Scholar] [CrossRef]
- Yue, S.Y.; Wang, Y.; Wei, L.; Zhang, Z.; Wang, H. The joint empirical mode decomposition-local mean decomposition method and its application to time series of compressor stall process. Aerosp. Sci. Technol. 2020, 105, 105969. [Google Scholar] [CrossRef]
- Li, Y.-X.; Jiao, S.-B.; Gao, X. A novel signal feature extraction technology based on empirical wavelet transform and reverse dispersion entropy. Def. Technol. 2021, 17, 1625–1635. [Google Scholar] [CrossRef]
- Liu, Q.Q.; Yang, J.T.; Zhang, K. An improved empirical wavelet transform and sensitive components selecting method for bearing fault. Measurement 2022, 187, 110348. [Google Scholar] [CrossRef]
- He, X.Z.; Zhou, X.; Yu, W.; Hou, Y.; Mechefske, C.K. Adaptive variational mode decomposition and its application to multi-fault detection using mechanical vibration signals. ISA Trans. 2021, 111, 360–375. [Google Scholar] [CrossRef]
- Gu, J.; Peng, Y.; Lu, H.; Chang, X.; Cao, S.; Chen, G.; Cao, B. An optimized variational mode decomposition method and its application in vibration signal analysis of bearings. Struct. Health Monit. 2022, 21, 2386–2407. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, J.; Wang, H.; Guo, L. Composite fault diagnosis of gearbox based on empirical mode decomposition and improved variational mode decomposition. J. Low Freq. Noise Vib. Act. Control 2021, 40, 332–346. [Google Scholar] [CrossRef]
- Gu, J.; Peng, Y.X. An improved complementary ensemble empirical mode decomposition method and its application in rolling bearing fault diagnosis. Digit. Signal Process. 2021, 113, 103050. [Google Scholar] [CrossRef]
- Goyal, D.; Choudhary, A.; Sandhu, J.K.; Srivastava, P.; Saxena, K.K. An intelligent self-adaptive bearing fault diagnosis approach based on improved local mean decomposition. Int. J. Interact. Des. Manuf. 2022, 1–11. [Google Scholar] [CrossRef]
- Wang, J.Y.; Li, J.; Wang, H.E.J. Research on gearbox composite fault diagnosis based on improved local mean decomposition. Int. J. Dyn. Control 2021, 9, 1411–1422. [Google Scholar] [CrossRef]
- Qin, C.R.; Wang, D.; Xu, Z.; Tang, G. Improved empirical wavelet transform for compound weak bearing fault diagnosis with acoustic signals. Appl. Sci. 2020, 10, 682. [Google Scholar] [CrossRef]
- Kedadouche, M.; Thomas, M.; Tahan, A.J.M.S. A comparative study between Empirical Wavelet Transforms and Empirical Mode Decomposition Methods: Application to bearing defect diagnosis. Mech. Syst. Signal Process. 2016, 81, 88–107. [Google Scholar] [CrossRef]
- Chen, X.J.; Yang, Y.; Cui, Z.; Shen, J. Vibration fault diagnosis of wind turbines based on variational mode decomposition and energy entropy. Energy 2019, 174, 1100–1109. [Google Scholar] [CrossRef]
- Wang, Z.J.; He, G.; Du, W.; Zhou, J.; Han, X.; Wang, J.; He, H.; Guo, X.; Wang, J.; Kou, Y. Application of parameter optimized variational mode decomposition method in fault diagnosis of gearbox. IEEE Access 2019, 7, 44871–44882. [Google Scholar] [CrossRef]
- Kumar, A.; Zhou, Y.Q.; Xiang, J.W. Optimization of VMD using kernel-based mutual information for the extraction of weak features to detect bearing defects. Measurement 2021, 168, 108402. [Google Scholar] [CrossRef]
- Yao, G.; Wang, Y.; Benbouzid, M.; Ait-Ahmed, M.; Yao, G.; Wang, Y.; Benbouzid, M.; Ait-Ahmed, M. A hybrid gearbox fault diagnosis method based on GWO-VMD and DE-KELM. Appl. Sci. 2021, 11, 4996. [Google Scholar] [CrossRef]
- Liu, Z.C.; Li, S.; Wang, R.; Jia, X. Research on Fault Feature Extraction Method of Rolling Bearing Based on SSA–VMD–MCKD. Electronics 2022, 11, 3404. [Google Scholar] [CrossRef]
- Lei, Y.G.; Yang, B.; Jiang, X.; Jia, F.; Li, N.; Nandi, A.K. Applications of machine learning to machine fault diagnosis: A review and roadmap. Mech. Syst. Signal Process. 2020, 138, 106587. [Google Scholar] [CrossRef]
- Lu, J.T.; Qian, W.; Li, S.; Cui, R. Enhanced K-nearest neighbor for intelligent fault diagnosis of rotating machinery. Appl. Sci. 2021, 11, 919. [Google Scholar] [CrossRef]
- Hosseinpour-Zarnaq, M.; Omid, M.; Biabani-Aghdam, E. Fault diagnosis of tractor auxiliary gearbox using vibration analysis and random forest classifier. Inf. Process. Agric. 2022, 9, 60–67. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Yao, L.G.; Cai, Y.W. Rolling bearing fault diagnosis using generalized refined composite multiscale sample entropy and optimized support vector machine. Measurement 2020, 156, 107574. [Google Scholar] [CrossRef]
- Xu, L.Y.; Zhao, G.; Zhao, S.; Wu, Y.; Chen, X. Fault Diagnosis Method for Tractor Transmission System Based on Improved Convolutional Neural Network–Bidirectional Long Short-Term Memory. Machines 2024, 12, 492. [Google Scholar] [CrossRef]
- Toma, R.N.; Prosvirin, A.E.; Kim, J.-M. Bearing fault diagnosis of induction motors using a genetic algorithm and machine learning classifiers. Sensors 2020, 20, 1884. [Google Scholar] [CrossRef]
- Shao, S.Y.; Yan, R.; Lu, Y.; Wang, P.; Gao, R.X. DCNN-based multi-signal induction motor fault diagnosis. IEEE Trans. Instrum. Meas. 2019, 69, 2658–2669. [Google Scholar] [CrossRef]
- Guo, Z.J.; Liu, M.; Wang, Y.; Qin, H. A new fault diagnosis classifier for rolling bearing united multi-scale permutation entropy optimize VMD and cuckoo search SVM. IEEE Access 2020, 8, 153610–153629. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. Artificial gorilla troops optimizer: A new nature-inspired metaheuristic algorithm for global optimization problems. Int. J. Intell. Syst. 2021, 36, 5887–5958. [Google Scholar] [CrossRef]
- Fadhil, M.S.; Farhan, A.K.; Fadhil, M.N. Designing substitution box based on the 1D logistic map chaotic system. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1076. [Google Scholar]
- Alawida, M. Enhancing logistic chaotic map for improved cryptographic security in random number generation. J. Inf. Secur. Appl. 2024, 80, 103685. [Google Scholar] [CrossRef]
- Choudhary, S.; Sugumaran, S.; Belazi, A.; El-Latif, A.A.A. Linearly decreasing inertia weight PSO and improved weight factor-based clustering algorithm for wireless sensor networks. J. Ambient. Intell. Humaniz. Comput. 2023, 14, 6661–6679. [Google Scholar] [CrossRef]
- Dehghani, M.; Trojovský, P. Osprey optimization algorithm: A new bio-inspired metaheuristic algorithm for solving engineering optimization problems. Front. Mech. Eng. 2023, 8, 1126450. [Google Scholar] [CrossRef]
- Kaidi, W.; Khishe, M.; Mohammadi, M. Dynamic levy flight chimp optimization. Knowl. Based Syst. 2022, 235, 107625. [Google Scholar] [CrossRef]
- Ribeiro, M.; Henriques, T.; Castro, L.; Souto, A.; Antunes, L.; Costa-Santos, C.; Teixeira, A. The entropy universe. Entropy 2021, 23, 222. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Qu, L.; Wang, P.; Li, Z. An oscillatory particle swarm optimization feature selection algorithm for hybrid data based on mutual information entropy. Appl. Soft Comput. 2024, 152, 111261. [Google Scholar] [CrossRef]
- Cortes, C. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Scholkopf, B.; Alexander, J.S. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; MIT Press: Cambridge, MA, USA, 2018. [Google Scholar]
Gorilla Population Size | Maximum Iterations | Optimization Parameters | Search Range |
---|---|---|---|
15 | 20 | ||
Bearing Status | Fitness Value | Optimal IMF Component | ||
---|---|---|---|---|
1 | 110 | 10 | 0.53519 | IMF1 |
2 | 2104 | 10 | 0.72607 | IMF2 |
3 | 110 | 9 | 0.70307 | IMF1 |
4 | 2491 | 5 | 0.72564 | IMF2 |
5 | 1989 | 7 | 0.75217 | IMF1 |
6 | 1980 | 10 | 0.65067 | IMF1 |
7 | 2271 | 10 | 0.66239 | IMF1 |
8 | 2082 | 9 | 0.68290 | IMF1 |
9 | 2372 | 10 | 0.68985 | IMF1 |
10 | 2491 | 10 | 0.79858 | IMF1 |
Gorilla Population Size | Maximum Iterations | Optimization Parameters | Search Range |
---|---|---|---|
10 | 30 | ||
Algorithm Model | Regularization Parameter | Kernel Parameter | Experiment |
---|---|---|---|
OLGTO-SVM | 471.6035 | 747.5808 | (2) |
20.2627 | 42.4093 | (4) |
Methods | Accuracy |
---|---|
SVM | 29.5% |
OLGTO-SVM | 29.75% |
OLGTO-VMD-SVM | 94.5% |
OLGTO-VMD-OLGTO-SVM | 99.5% |
Motor States | Fitness Value | Optimal IMF Component | ||
---|---|---|---|---|
1 | 2054 | 10 | 0.65074 | IMF1 |
2 | 1176 | 7 | 0.67622 | IMF1 |
3 | 2319 | 10 | 0.65835 | IMF1 |
4 | 144 | 8 | 0.93037 | IMF1 |
5 | 955 | 10 | 0.61136 | IMF1 |
6 | 1545 | 7 | 0.661504 | IMF1 |
Algorithm Model | Algorithm Model | Algorithm Model |
---|---|---|
OLGTO-SVM | 81.4547 | 588.5758 |
Methods | Accuracy |
---|---|
OLGTO-VMD-KNN | 92.6667% |
OLGTO-VMD-CNN-BiLSTM | 92.8958% |
OLGTO-VMD-ELM | 95.0833% |
OLGTO-VMD-BP | 98.125% |
OLGTO-VMD-RF | 98.4375% |
OLGTO-VMD-OLGTO-SVM | 98.6458% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, T.; Ma, L.; Zhang, H. Research on Fault Diagnosis Method with Adaptive Artificial Gorilla Troops Optimization Optimized Variational Mode Decomposition and Support Vector Machine Parameters. Machines 2024, 12, 637. https://doi.org/10.3390/machines12090637
Fang T, Ma L, Zhang H. Research on Fault Diagnosis Method with Adaptive Artificial Gorilla Troops Optimization Optimized Variational Mode Decomposition and Support Vector Machine Parameters. Machines. 2024; 12(9):637. https://doi.org/10.3390/machines12090637
Chicago/Turabian StyleFang, Ting, Long Ma, and Hongkai Zhang. 2024. "Research on Fault Diagnosis Method with Adaptive Artificial Gorilla Troops Optimization Optimized Variational Mode Decomposition and Support Vector Machine Parameters" Machines 12, no. 9: 637. https://doi.org/10.3390/machines12090637
APA StyleFang, T., Ma, L., & Zhang, H. (2024). Research on Fault Diagnosis Method with Adaptive Artificial Gorilla Troops Optimization Optimized Variational Mode Decomposition and Support Vector Machine Parameters. Machines, 12(9), 637. https://doi.org/10.3390/machines12090637