A Review of the Applications and Challenges of Dielectric Elastomer Actuators in Soft Robotics
Abstract
:1. Introduction
Actuators | Strain (%) | Stress (MPa) | Work Density (KJ/m3) | Efficiency (%) | Relative Speed | References |
---|---|---|---|---|---|---|
Natural muscle (peaks in nature) | 100 | 0.8 | 40 | 40 | Fast | [37] |
Natural muscle (human skeletal) | 40 | 0.35 | 70 | 40 | Medium | [37,38] |
SMAs | 10 | 200 | 10,000 | 10 | Slow | [38,39] |
SMPs | 400 | 4 | 2000 | 10 | Slow | [40] |
Pneumatic actuators | 99.7 | 1.16 | 100,000 | 49 | Medium | [39,41,42] |
DEAs | >500 | 7.7 | 3400 | 90 | Fast | [39,43,44] |
Ionic gels | 40 | 0.3 | 60 | 30 | Slow | [37] |
IPMCs | 40 | 3 | 5.5 | 1.5 | Slow | [39] |
Piezoelectric ceramic | 0.2 | 110 | 110 | 90 | Fast | [37] |
2. Dielectric Elastomer Actuators
2.1. Working Principle
2.2. Properities of DE Materials
2.3. Compliant Electrodes
2.4. Typical Configurations of DEAs
3. Utilization of DEAs in Soft Robotics
3.1. Soft Grippers
3.2. Multilegged Robots
3.3. Crawling Robots
3.4. Swimming Robots
3.5. Jumping/Flying Robots
3.6. Humanoid Robots
3.7. Wearable Devices
4. Prospects and Challenges
4.1. The Actuation Properties of DE Material
4.2. Modeling and Control
4.3. Reliability
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chidsey, C.E.D.; Murray, R.W. Electroactive Polymers and Macromolecular Electronics. Science 1986, 231, 25–31. [Google Scholar] [CrossRef]
- Hartmann, F.; Penkner, L.; Danninger, D.; Arnold, N.; Kaltenbrunner, M. Soft Tunable Lenses Based on Zipping Electroactive Polymer Actuators. Adv. Sci. 2020, 8, 2003104. [Google Scholar] [CrossRef] [PubMed]
- Fannir, A.; Temmer, R.; Nguyen, G.T.M.; Cadiergues, L.; Laurent, E.; Madden, J.D.W.; Vidal, F.; Plesse, C. Linear Artificial Muscle Based on Ionic Electroactive Polymer: A Rational Design for Open-Air and Vacuum Actuation. Adv. Mater. Technol. 2018, 4, 1800519. [Google Scholar] [CrossRef]
- Puza, F.; Lienkamp, K. 3D Printing of Polymer Hydrogels—From Basic Techniques to Programmable Actuation. Adv. Funct. Mater. 2022, 32, 2205345. [Google Scholar] [CrossRef]
- Li, M.; Wang, X.; Dong, B.; Sitti, M. In-air fast response and high speed jumping and rolling of a light-driven hydrogel actuator. Nat. Commun. 2020, 11, 3988. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Wallin, T.J.; Pan, W.; Xu, A.; Wang, K.; Giannelis, E.P.; Mazzolai, B.; Shepherd, R.F.; Xu, P. Autonomic perspiration in 3D-printed hydrogel actuators. Sci. Robot. 2020, 5, eaaz3918. [Google Scholar] [CrossRef]
- Na, H.; Kang, Y.-W.; Park, C.S.; Jung, S.; Kim, H.-Y.; Sun, J.-Y. Hydrogel-based strong and fast actuators by electroosmotic turgor pressure. Science 2022, 376, 301–307. [Google Scholar] [CrossRef]
- Diller, E.; Giltinan, J.; Lum, G.Z.; Ye, Z.; Sitti, M. Six-degree-of-freedom magnetic actuation for wireless microrobotics. Int. J. Robot. Res. 2015, 35, 114–128. [Google Scholar] [CrossRef]
- Nguyen, K.T.; Lee, H.-S.; Kim, J.; Choi, E.; Park, J.-O.; Kim, C.-S. A composite electro-permanent magnetic actuator for microrobot manipulation. Int. J. Mech. Sci. 2022, 229, 107516. [Google Scholar] [CrossRef]
- Ryan, P.; Diller, E. Magnetic Actuation for Full Dexterity Microrobotic Control Using Rotating Permanent Magnets. IEEE Trans. Robot. 2017, 33, 1398–1409. [Google Scholar] [CrossRef]
- Han, M.-W.; Ahn, S.-H. Smart Materials: Blooming Knit Flowers: Loop-Linked Soft Morphing Structures for Soft Robotics (Adv. Mater. 13/2017). Adv. Mater. 2017, 29, 1606580. [Google Scholar] [CrossRef] [PubMed]
- Boyvat, M.; Koh, J.-S.; Wood, R.J. Addressable wireless actuation for multijoint folding robots and devices. Sci. Robot. 2017, 2, eaan1544. [Google Scholar] [CrossRef]
- Granberry, R.; Barry, J.; Holschuh, B.; Abel, J. Kinetically Tunable, Active Auxetic, and Variable Recruitment Active Textiles from Hierarchical Assemblies. Adv. Mater. Technol. 2021, 6, 2000825. [Google Scholar] [CrossRef]
- Yang, X.; Chang, L.; Pérez-Arancibia, N.O. An 88-milligram insect-scale autonomous crawling robot driven by a catalytic artificial muscle. Sci. Robot. 2020, 5, eaba0015. [Google Scholar] [CrossRef]
- Lendlein, A. Fabrication of reprogrammable shape-memory polymer actuators for robotics. Sci. Robot. 2018, 3, eaat9090. [Google Scholar] [CrossRef] [PubMed]
- Ze, Q.; Kuang, X.; Wu, S.; Wong, J.; Montgomery, S.M.; Zhang, R.; Kovitz, J.M.; Yang, F.; Qi, H.J.; Zhao, R. Magnetic Shape Memory Polymers with Integrated Multifunctional Shape Manipulation. Adv. Mater. 2019, 32, e1906657. [Google Scholar] [CrossRef]
- Wang, Y.; Shu, J.; Cao, W.; Li, C.; Cao, M. Graphene Implanted Shape Memory Polymers with Dielectric Gene Dominated Highly Efficient Microwave Drive. Adv. Funct. Mater. 2023, 33, 2303560. [Google Scholar] [CrossRef]
- Kotikian, A.; Morales, J.M.; Lu, A.; Mueller, J.; Davidson, Z.S.; Boley, J.W.; Lewis, J.A. Innervated, Self-Sensing Liquid Crystal Elastomer Actuators with Closed Loop Control. Adv. Mater. 2021, 33, 2101814. [Google Scholar] [CrossRef] [PubMed]
- Boothby, J.M.; Gagnon, J.C.; McDowell, E.; Van Volkenburg, T.; Currano, L.; Xia, Z. An Untethered Soft Robot Based on Liquid Crystal Elastomers. Soft Robot. 2022, 9, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, Z.; Yang, Y.; Chen, Q.; Qian, X.; Wu, Y.; Liang, H.; Xu, Y.; Wei, Y.; Ji, Y. Seamless multimaterial 3D liquid-crystalline elastomer actuators for next-generation entirely soft robots. Sci. Adv. 2020, 6, eaay8606. [Google Scholar] [CrossRef]
- Wang, H.; Yang, L.; Yang, Y.; Zhang, D.; Tian, A. Highly flexible, large-deformation ionic polymer metal composites for artificial muscles: Fabrication, properties, applications, and prospects. Chem. Eng. J. 2023, 469, 143976. [Google Scholar] [CrossRef]
- Zhang, H.; Lin, Z.H.; Hu, Y.; Ma, S.Q.; Liang, Y.H.; Ren, L.; Ren, L. Low-Voltage Driven Ionic Polymer-Metal Composite Actuators: Structures, Materials, and Applications. Adv. Sci. 2023, 10, 2206135. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.Q.; Zhang, Y.P.; Liang, Y.H.; Ren, L.; Tian, W.J.; Ren, L.Q. High-Performance Ionic-Polymer-Metal Composite: Toward Large-Deformation Fast-Response Artificial Muscles. Adv. Funct. Mater. 2020, 30, 1908508. [Google Scholar] [CrossRef]
- Drotman, D.; Jadhav, S.; Sharp, D.; Chan, C.; Tolley, M.T. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 2021, 6, eaay2627. [Google Scholar] [CrossRef]
- Diteesawat, R.S.; Helps, T.; Taghavi, M.; Rossiter, J. Electro-pneumatic pumps for soft robotics. Sci. Robot. 2021, 6, 3721. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Askounis, E.; Plamthottam, R.; Libby, T.; Peng, Z.; Youssef, K.; Pu, J.; Pelrine, R.; Pei, Q. A processable, high-performance dielectric elastomer and multilayering process. Science 2022, 377, 228–232. [Google Scholar] [CrossRef]
- Yin, L.-J.; Zhao, Y.; Zhu, J.; Yang, M.; Zhao, H.; Pei, J.-Y.; Zhong, S.-L.; Dang, Z.-M. Soft, tough, and fast polyacrylate dielectric elastomer for non-magnetic motor. Nat. Commun. 2021, 12, 4517. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Jiang, Y.; Lv, J.; Huang, Y.; Gai, Z.; Liu, Y.; Lee, P.S.; Xu, H.; Wu, D. Multilayer Dielectric Elastomer with Reconfigurable Electrodes for Artificial Muscle. Adv. Sci. 2023, 10, e2206094. [Google Scholar] [CrossRef]
- Huang, J.; Zhang, X.; Liu, R.; Ding, Y.; Guo, D. Polyvinyl chloride-based dielectric elastomer with high permittivity and low viscoelasticity for actuation and sensing. Nat. Commun. 2023, 14, 1483. [Google Scholar] [CrossRef]
- Wakle, S.; Lin, T.H.; Huang, S.; Basu, S.; Lau, G.K. How Fast Can a Robotic Drummer Beat Using Dielectric Elastomer Actuators? IEEE Robot. Autom. Lett. 2024, 9, 2638–2645. [Google Scholar] [CrossRef]
- Peng, Z.; Shi, Y.; Chen, N.; Li, Y.; Pei, Q. Stable and High-Strain Dielectric Elastomer Actuators Based on a Carbon Nanotube-Polymer Bilayer Electrode. Adv. Funct. Mater. 2020, 31, 2008321. [Google Scholar] [CrossRef]
- Pu, J.; Meng, Y.; Xie, Z.; Peng, Z.; Wu, J.; Shi, Y.; Plamthottam, R.; Yang, W.; Pei, Q. A unimorph nanocomposite dielectric elastomer for large out-of-plane actuation. Sci. Adv. 2022, 8, eabm6200. [Google Scholar] [CrossRef] [PubMed]
- Banet, P.; Zeggai, N.; Chavanne, J.; Nguyen, G.T.M.; Chikh, L.; Plesse, C.; Almanza, M.; Martinez, T.; Civet, Y.; Perriard, Y.; et al. Evaluation of dielectric elastomers to develop materials suitable for actuation. Soft Matter 2021, 17, 10786–10805. [Google Scholar] [CrossRef]
- Zhao, H.; Hussain, A.M.; Duduta, M.; Vogt, D.M.; Wood, R.J.; Clarke, D.R. Compact Dielectric Elastomer Linear Actuators. Adv. Funct. Mater. 2018, 28, 1804328. [Google Scholar] [CrossRef]
- Yang, Y.; Li, D.; Sun, Y.; Wu, M.; Su, J.; Li, Y.; Yu, X.; Li, L.; Yu, J. Muscle-inspired soft robots based on bilateral dielectric elastomer actuators. Microsyst. Nanoeng. 2023, 9, 124. [Google Scholar] [CrossRef]
- Chouinard, P.; Plante, J.-S. Bistable Antagonistic Dielectric Elastomer Actuators for Binary Robotics and Mechatronics. IEEE/ASME Trans. Mechatron. 2011, 17, 857–865. [Google Scholar] [CrossRef]
- Brochu, P.; Pei, Q. Advances in Dielectric Elastomers for Actuators and Artificial Muscles. Macromol. Rapid Commun. 2009, 31, 10–36. [Google Scholar] [CrossRef]
- Bar-Cohen, Y. Electroactive Polymers as Artificial Muscles-Reality and Challenges. In Proceedings of the 19th AIAA Applied Aerodynamics Conference, Anaheim, CA, USA, 11–14 June 2001. [Google Scholar] [CrossRef]
- Liang, W.; Liu, H.; Wang, K.; Qian, Z.; Ren, L.; Ren, L. Comparative study of robotic artificial actuators and biological muscle. Adv. Mech. Eng. 2014, 12, 1687814020933409. [Google Scholar] [CrossRef]
- Guo, Y.; Liu, L.; Liu, Y.; Leng, J. Review of Dielectric Elastomer Actuators and Their Applications in Soft Robots. Adv. Intell. Syst. 2021, 3, 2000282. [Google Scholar] [CrossRef]
- Lee, J.-G.; Rodrigue, H. Armor-Based Stable Force Pneumatic Artificial Muscles for Steady Actuation Properties. Soft Robot. 2022, 9, 413–424. [Google Scholar] [CrossRef] [PubMed]
- Jamil, B.; Oh, N.; Lee, J.G.; Lee, H.; Rodrigue, H. A Review and Comparison of Linear Pneumatic Artificial Muscles. Int. J. Precis. Eng. Manuf.-Green Technol. 2024, 11, 277–289. [Google Scholar] [CrossRef]
- Feng, W.; Sun, L.; Jin, Z.; Chen, L.; Liu, Y.; Xu, H.; Wang, C. A large-strain and ultrahigh energy density dielectric elastomer for fast moving soft robot. Nat. Commun. 2024, 15, 4222. [Google Scholar] [CrossRef] [PubMed]
- Kornbluh, R.; Pelrine, R.; Pei, Q.B.; Oh, S.; Joseph, J. Ultrahigh Strain Response of Field-Actuated Elastomeric Polymers. In Proceedings of the Smart Structures and Materials 2000: Electroactive Polymer Actuators and Devices (EAPAD), Newport Beach, CA, USA, 7 June 2000; Volume 3987, pp. 51–64. [Google Scholar] [CrossRef]
- Wang, L.; Zhuo, J.; Peng, J.; Dong, H.; Jiang, S.; Shi, Y. A Stretchable Soft Pump Driven by a Heterogeneous Dielectric Elastomer Actuator. Adv. Funct. Mater. 2024, 34, 2411160. [Google Scholar] [CrossRef]
- He, J.; Chen, Z.; Xiao, Y.; Cao, X.; Mao, J.; Zhao, J.; Gao, X.; Li, T.; Luo, Y. Intrinsically Anisotropic Dielectric Elastomer Fiber Actuators. ACS Mater. Lett. 2022, 4, 472–479. [Google Scholar] [CrossRef]
- Xu, C.Y.; Li, B.Z.; Xu, C.Y.; Zheng, J.M. A Novel Dielectric Elastomer Actuator Based on Compliant Polyvinyl Alcohol Hydrogel Electrodes. J. Mater. Sci.-Mater. Electron. 2015, 26, 9213–9218. [Google Scholar] [CrossRef]
- Bai, Y.; Jiang, Y.; Chen, B.; Foo, C.C.; Zhou, Y.; Xiang, F.; Zhou, J.; Wang, H.; Suo, Z. Cyclic performance of viscoelastic dielectric elastomers with solid hydrogel electrodes. Appl. Phys. Lett. 2014, 104, 062902. [Google Scholar] [CrossRef]
- Koh, S.J.A.; Keplinger, C.; Li, T.; Bauer, S.; Suo, Z. Dielectric Elastomer Generators: How Much Energy Can Be Converted? IEEE/ASME Trans. Mechatron. 2010, 16, 33–41. [Google Scholar] [CrossRef]
- Huang, J.; Shian, S.; Suo, Z.; Clarke, D.R. Maximizing the Energy Density of Dielectric Elastomer Generators Using Equi-Biaxial Loading. Adv. Funct. Mater. 2013, 23, 5056–5061. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, M.Y. Multi-Axis Soft Sensors Based on Dielectric Elastomer. Soft Robot. 2016, 3, 3–12. [Google Scholar] [CrossRef]
- Xu, Z.; Bao, K.; Di, K.; Chen, H.; Tan, J.; Xie, X.; Shao, Y.; Cai, J.; Lin, S.; Cheng, T.; et al. High-Performance Dielectric Elastomer Nanogenerator for Efficient Energy Harvesting and Sensing via Alternative Current Method. Adv. Sci. 2022, 9, e2201098. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Liang, W.; Zhu, J.; Ren, Q. Control of a muscle-like soft actuator via a bioinspired approach. Bioinspir. Biomim. 2018, 13, 066005. [Google Scholar] [CrossRef]
- Pelrine, R.E.; Kornbluh, R.D.; Joseph, J.P. Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A Phys. 1998, 64, 77–85. [Google Scholar] [CrossRef]
- An, L.; Wang, F.; Cheng, S.; Lu, T.; Wang, T.J. Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Mater. Struct. 2015, 24, 035006. [Google Scholar] [CrossRef]
- Kanno, R.; Nagai, T.; Shintake, J. Rapid Fabrication Method for Soft Devices Using Off-the-Shelf Conductive and Dielectric Acrylic Elastomers. Adv. Intell. Syst. 2020, 3, 2000173. [Google Scholar] [CrossRef]
- Opris, D.M.; Molberg, M.; Walder, C.; Ko, Y.S.; Fischer, B.; Nüesch, F.A. New Silicone Composites for Dielectric Elastomer Actuator Applications In Competition with Acrylic Foil. Adv. Funct. Mater. 2011, 21, 3531–3539. [Google Scholar] [CrossRef]
- Pelrine, R.; Kornbluh, R.; Pei, Q.; Joseph, J. High-Speed Electrically Actuated Elastomers with Strain Greater Than 100%. Science 2000, 287, 836–839. [Google Scholar] [CrossRef]
- Ha, S.M.; Yuan, W.; Pei, Q.; Pelrine, R.; Stanford, S. Interpenetrating networks of elastomers exhibiting 300% electrically-induced area strain. Smart Mater. Struct. 2007, 16, S280–S287. [Google Scholar] [CrossRef]
- Han, Z.; Peng, Z.; Guo, Y.; Wang, H.; Plamthottam, R.; Pei, Q. Hybrid Fabrication of Prestrain-Locked Acrylic Dielectric Elastomer Thin Films and Multilayer Stacks. Macromol. Rapid Commun. 2023, 44, e2300160. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tan, M.W.M.; Poh, W.C.; Gao, D.; Wu, W.; Lee, P.S. A highly stretchable, self-healable, transparent and solid-state poly(ionic liquid) filler for high-performance dielectric elastomer actuators. J. Mater. Chem. A 2023, 11, 14159–14168. [Google Scholar] [CrossRef]
- Tan, M.W.M.; Thangavel, G.; Lee, P.S. Enhancing dynamic actuation performance of dielectric elastomer actuators by tuning viscoelastic effects with polar crosslinking. NPG Asia Mater. 2019, 11, 62. [Google Scholar] [CrossRef]
- Vatankhah-Varnoosfaderani, M.; Daniel, W.F.M.; Zhushma, A.P.; Li, Q.; Morgan, B.J.; Matyjaszewski, K.; Armstrong, D.P.; Spontak, R.J.; Dobrynin, A.V.; Sheiko, S.S. Bottlebrush Elastomers: A New Platform for Freestanding Electroactuation. Adv. Mater. 2016, 29, 1604209. [Google Scholar] [CrossRef] [PubMed]
- Adeli, Y.; Owusu, F.; Nüesch, F.A.; Opris, D.M. On-Demand Cross-Linkable Bottlebrush Polymers for Voltage-Driven Artificial Muscles. ACS Appl. Mater. Interfaces 2023, 15, 20410–20420. [Google Scholar] [CrossRef]
- Zhang, X.Q.; Löwe, C.; Wissler, M.; Jähne, B.; Kovacs, G. Dielectric Elastomers in Actuator Technology. Adv. Eng. Mater. 2005, 7, 361–367. [Google Scholar] [CrossRef]
- Dünki, S.J.; Ko, Y.S.; Nüesch, F.A.; Opris, D.M. Self-Repairable, High Permittivity Dielectric Elastomers with Large Actuation Strains at Low Electric Fields. Adv. Funct. Mater. 2015, 25, 2467–2475. [Google Scholar] [CrossRef]
- Sheima, Y.; Venkatesan, T.R.; Frauenrath, H.; Opris, D.M. Synthesis of polysiloxane elastomers modified with sulfonyl side groups and their electromechanical response. J. Mater. Chem. C 2023, 11, 7367. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Yu, L.; Nie, Y.; Skov, A.L. Silicone Elastomers with High-Permittivity Ionic Liquids Loading. Adv. Eng. Mater. 2019, 21, 1900481. [Google Scholar] [CrossRef]
- Kim, S.; Hsiao, Y.-H.; Lee, Y.; Zhu, W.; Ren, Z.; Niroui, F.; Chen, Y. Laser-assisted failure recovery for dielectric elastomer actuators in aerial robots. Sci. Robot. 2023, 8, eadf4278. [Google Scholar] [CrossRef]
- Sun, W.; Liang, H.; Zhang, F.; Wang, H.; Lu, Y.; Li, B.; Chen, G. Dielectric elastomer minimum energy structure with a unidirectional actuation for a soft crawling robot: Design, modeling, and kinematic study. Int. J. Mech. Sci. 2022, 238, 107837. [Google Scholar] [CrossRef]
- Aouraghe, M.A.; Zhou, M.J.; Qiu, Y.P.; Xu, F.J. Low-Voltage Activating, Fast Responding Electro-Thermal Actuator Based on Carbon Nanotube Film/Pdms Composites. Adv. Fiber Mater. 2021, 3, 38–46. [Google Scholar] [CrossRef]
- Yu, W.; Chen, W.; Yuan, W.; Li, G.; Meng, C.; Guo, S. Ultrathin and Highly-Stable rubber electrodes based on Island-Bridge Multi-Filler conductive network for Multilayer-Stacked dielectric elastomer artificial muscles. Chem. Eng. J. 2024, 493, 152714. [Google Scholar] [CrossRef]
- Barisci, J.N.; Wallace, G.G.; Baughman, R.H. Electrochemical Characterization of Single-Walled Carbon Nanotube Electrodes. J. Electrochem. Soc. 2000, 147, 4580–4583. [Google Scholar] [CrossRef]
- Horii, T.; Okada, K.; Fujie, T. Ultra-Thin and Conformable Electrodes Composed of Single-Walled Carbon Nanotube Networks for Skin-Contact Dielectric Elastomer Actuators. Adv. Electron. Mater. 2022, 9, 2200165. [Google Scholar] [CrossRef]
- Lee, Y.R.; Kwon, H.; Lee, D.H.; Lee, B.Y. Highly flexible and transparent dielectric elastomer actuators using silver nanowire and carbon nanotube hybrid electrodes. Soft Matter 2017, 13, 6390–6395. [Google Scholar] [CrossRef]
- Li, R.; Wang, Q.; Jiang, J.; Xiang, X.; Ye, P.; Wang, Y.; Qin, Y.; Chen, Y.; Lai, W.; Zhang, X. Highly Stable Silver Nanowire Plasmonic Electrodes for Flexible Polymer Light-Emitting Devices. ACS Appl. Mater. Interfaces 2024, 16, 31419–31427. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Chortos, A.; Lei, T.; Jin, L.; Kim, T.R.; Bae, W.-G.; Zhu, C.; Wang, S.; Pfattner, R.; Chen, X.; et al. Ultratransparent and stretchable graphene electrodes. Sci. Adv. 2017, 3, e1700159. [Google Scholar] [CrossRef] [PubMed]
- Jang, H.; Park, Y.J.; Chen, X.; Das, T.; Kim, M.; Ahn, J. Graphene-Based Flexible and Stretchable Electronics. Adv. Mater. 2016, 28, 4184–4202. [Google Scholar] [CrossRef] [PubMed]
- Shintake, J.; Rosset, S.; Schubert, B.; Floreano, D.; Shea, H. Versatile Soft Grippers with Intrinsic Electroadhesion Based on Multifunctional Polymer Actuators. Adv. Mater. 2016, 28, 231–238. [Google Scholar] [CrossRef]
- Lee, S.; Moghani, M.; Li, A.; Duduta, M. A Small Steerable Tip Based on Dielectric Elastomer Actuators. IEEE Robot. Autom. Lett. 2023, 8, 6531–6538. [Google Scholar] [CrossRef]
- Duduta, M.; Clarke, D.R.; Wood, R.J. A High Speed Soft Robot Based on Dielectric Elastomer Actuators. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017. [Google Scholar] [CrossRef]
- Wang, S.; Huang, B.; McCoul, D.; Li, M.; Mu, L.; Zhao, J. A soft breaststroke-inspired swimming robot actuated by dielectric elastomers. Smart Mater. Struct. 2019, 28, 045006. [Google Scholar] [CrossRef]
- Pei, Q.; Rosenthal, M.; Stanford, S.; Prahlad, H.; Pelrine, R. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Mater. Struct. 2004, 13, N86–N92. [Google Scholar] [CrossRef]
- Pei, Q.B.; Pelrine, R.; Stanford, S.; Kornbluh, R.; Rosenthal, M.; Meijer, K.; Full, R. Multifunctional Electroelastomer Rolls and Their Application for Biomimetic Walking Robots. In Proceedings of the Smart Structures and Materials 2002: Industrial and Commercial Applications of Smart Structures Technologies, San Diego, CA, USA, 9 July 2002; Volume 4698, pp. 246–253. [Google Scholar] [CrossRef]
- Nagai, T.; Shintake, J. Rolled Dielectric Elastomer Antagonistic Actuators for Biomimetic Underwater Robots. Polymers 2022, 14, 4549. [Google Scholar] [CrossRef] [PubMed]
- Lau, G.-K.; Heng, K.-R.; Ahmed, A.S.; Shrestha, M. Dielectric elastomer fingers for versatile grasping and nimble pinching. Appl. Phys. Lett. 2017, 110, 182906. [Google Scholar] [CrossRef]
- Thongking, W.; Wiranata, A.; Minaminosono, A.; Mao, Z.; Maeda, S. Soft Robotic Gripper Based on Multi-Layers of Dielectric Elastomer Actuators. J. Robot. Mechatron. 2021, 33, 968–974. [Google Scholar] [CrossRef]
- Peng, J.; Zhuo, J.; Dong, H.; Wang, L.; Jiang, S.; Li, T.; Shi, Y. Dielectric Elastomer Actuators with Low Driving Voltages and High Mechanical Outputs Enabled by a Scalable Ultra-Thin Film Multilayering Process. Adv. Funct. Mater. 2024, 34, 2411801. [Google Scholar] [CrossRef]
- Almanza, M.; Clavica, F.; Chavanne, J.; Moser, D.; Obrist, D.; Carrel, T.; Civet, Y.; Perriard, Y. Feasibility of a Dielectric Elastomer Augmented Aorta. Adv. Sci. 2021, 8, 2001974. [Google Scholar] [CrossRef]
- Godaba, H.; Li, J.; Wang, Y.; Zhu, J. A Soft Jellyfish Robot Driven by a Dielectric Elastomer Actuator. IEEE Robot. Autom. Lett. 2016, 1, 624–631. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Dai, M.; Zhang, Z. A novel flying robot system driven by dielectric elastomer balloon actuators. J. Intell. Mater. Syst. Struct. 2018, 29, 2522–2527. [Google Scholar] [CrossRef]
- Chen, F.; Cao, J.; Zhang, H.; Wang, M.Y.; Zhu, J.; Zhang, Y.F. Programmable Deformations of Networked Inflated Dielectric Elastomer Actuators. IEEE/ASME Trans. Mechatron. 2018, 24, 45–55. [Google Scholar] [CrossRef]
- Kofod, G.; Wirges, W.; Paajanen, M.; Bauer, S. Energy minimization for self-organized structure formation and actuation. Appl. Phys. Lett. 2007, 90, 081916. [Google Scholar] [CrossRef]
- Wang, Y.; Gupta, U.; Parulekar, N.; Zhu, J. A soft gripper of fast speed and low energy consumption. Sci. China Technol. Sci. 2018, 62, 31–38. [Google Scholar] [CrossRef]
- Dou, X.; Chen, Z.; Ren, F.; He, L.; Chen, J.; Yin, L.; Luo, Y.; Dang, Z.; Mao, J. Dielectric Elastomer Network with Large Side Groups Achieves Large Electroactive Deformation for Soft Robotic Grippers. Adv. Funct. Mater. 2024, 34, 2407049. [Google Scholar] [CrossRef]
- Aksoy, B.; Shea, H. Reconfigurable and Latchable Shape-Morphing Dielectric Elastomers Based on Local Stiffness Modulation. Adv. Funct. Mater. 2020, 30, 2001597. [Google Scholar] [CrossRef]
- Eckerle, J.; Stanford, S.; Marlow, J.; Schmidt, R.; Oh, S.; Low, T.; Shastri, S.V. Biologically Inspired Hexapedal Robot Using Field-Effect Electroactive Elastomer Artificial Muscles. In Proceedings of the Smart Structures and Materials 2001: Industrial and Commercial Applications of Smart Structures Technologies, Newport Beach, CA, USA, 14 June 2001; Volume 4332, pp. 269–280. [Google Scholar] [CrossRef]
- Pelrine, R.; Kornbluh, R.; Pei, Q.B.; Stanford, S.; Oh, S.J.; Eckerle, J.; Full, R.; Rosenthal, M.; Meijer, K. Dielectric Elastomer Artificial Muscle Actuators: Toward Biomimetic Motion. In Proceedings of the Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, 11 July 2002; Volume 4695, pp. 126–137. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Phung, H.; Nguyen, T.D.; Lee, C.; Kim, U.; Lee, D.; Moon, H.; Koo, J.; Nam, J.-D.; Choi, H.R. A small biomimetic quadruped robot driven by multistacked dielectric elastomer actuators. Smart Mater. Struct. 2014, 23. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Phung, H.; Nguyen, T.D.; Jung, H.; Choi, H.R. Multiple-degrees-of-freedom dielectric elastomer actuators for soft printable hexapod robot. Sens. Actuators A Phys. 2017, 267, 505–516. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Phung, H.; Hoang, P.T.; Nguyen, T.D.; Jung, H.; Choi, H.R. Development of an Insect-Inspired Hexapod Robot Actuated by Soft Actuators. J. Mech. Robot. 2018, 10, 061016. [Google Scholar] [CrossRef]
- Gu, G.; Zou, J.; Zhao, R.; Zhao, X.; Zhu, X. Soft wall-climbing robots. Sci. Robot. 2018, 3, eaat2874. [Google Scholar] [CrossRef]
- Tang, C.; Du, B.; Jiang, S.; Shao, Q.; Dong, X.; Liu, X.-J.; Zhao, H. A pipeline inspection robot for navigating tubular environments in the sub-centimeter scale. Sci. Robot. 2022, 7, eabm8597. [Google Scholar] [CrossRef]
- Du, Y.; Wu, X.; Xue, J.; Chen, X.; Cao, C.; Gao, X. A Soft Robot Driven by a Spring-Rolling Dielectric Elastomer Actuator with Two Bristles. Micromachines 2023, 14, 618. [Google Scholar] [CrossRef]
- Ji, X.; Liu, X.; Cacucciolo, V.; Imboden, M.; Civet, Y.; El Haitami, A.; Cantin, S.; Perriard, Y.; Shea, H. An autonomous untethered fast soft robotic insect driven by low-voltage dielectric elastomer actuators. Sci. Robot. 2019, 4, eaaz6451. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Zhao, B.; Li, X.; Dong, L.; Zhang, M.; Zou, J.; Gu, G. Dexterous electrical-driven soft robots with reconfigurable chiral-lattice foot design. Nat. Commun. 2023, 14, 5067. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Liu, N.; Chen, Z.; He, H.; Wang, Z.; Gu, Z.; Chen, Y.; Mao, J.; Luo, Y.; He, Y. 3D-Printed High-Frequency Dielectric Elastomer Actuator toward Insect-Scale Ultrafast Soft Robot. ACS Mater. Lett. 2023, 5, 704–714. [Google Scholar] [CrossRef]
- Ma, W.T.; Li, B.; Jiang, L.; Wu, Y.H.; Bai, R.Y.; Chen, G.M. A Soft, Centimeter-Scaled, Thin-Cable-Crawling Robot for Narrow Space Inspection. Adv. Intell. Syst. 2024, 6, 2300828. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Chang, J.-C.; Liu, J.; Axinte, D.; Dong, X. Multimodal locomotion ultra-thin soft robots for exploration of narrow spaces. Nat. Commun. 2024, 15, 6296. [Google Scholar] [CrossRef]
- Cheng, Z.; Feng, W.; Zhang, Y.; Sun, L.; Liu, Y.; Chen, L.; Wang, C. A Highly Robust Amphibious Soft Robot with Imperceptibility Based on a Water-Stable and Self-Healing Ionic Conductor. Adv. Mater. 2023, 35, e2301005. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Xiao, Y.; Zhang, Z.; Liang, Y.; Li, G.; Zhang, M.; Li, S.; Wong, T.-W.; Wang, Y.; Li, T.; et al. A soft artificial muscle driven robot with reinforcement learning. Sci. Rep. 2018, 8, 14518. [Google Scholar] [CrossRef]
- Cheng, T.Y.; Li, G.R.; Liang, Y.M.; Zhang, M.Q.; Liu, B.Y.; Wong, T.W.; Forman, J.; Chen, M.H.; Wang, G.Y.; Tao, Y.; et al. Untethered Soft Robotic Jellyfish. Smart Mater. Struct. 2019, 28, 015019. [Google Scholar] [CrossRef]
- Li, G.; Chen, X.; Zhou, F.; Liang, Y.; Xiao, Y.; Cao, X.; Zhang, Z.; Zhang, M.; Wu, B.; Yin, S.; et al. Self-powered soft robot in the Mariana Trench. Nature 2021, 591, 66–71. [Google Scholar] [CrossRef]
- Christianson, C.; Goldberg, N.N.; Deheyn, D.D.; Cai, S.; Tolley, M.T. Translucent soft robots driven by frameless fluid electrode dielectric elastomer actuators. Sci. Robot. 2018, 3, eaat1893. [Google Scholar] [CrossRef] [PubMed]
- Pei, Q.; Pelrine, R.; Rosenthal, M.A.; Stanford, S.; Prahlad, H.; Kornbluh, R.D. Recent Progress on Electroelastomer Artificial Muscles and Their Application for Biomimetic Robots. In Proceedings of the Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, 27 July 2004; Volume 5385, pp. 41–50. [Google Scholar] [CrossRef]
- Luo, B.; Li, B.; Yu, Y.; Yu, M.; Ma, J.; Yang, W.; Wang, P.; Jiao, Z. A Jumping Robot Driven by a Dielectric Elastomer Actuator. Appl. Sci. 2020, 10, 2241. [Google Scholar] [CrossRef]
- Duduta, M.; Berlinger, F.C.J.; Nagpal, R.; Clarke, D.R.; Wood, R.J.; Temel, F.Z. Electrically-latched compliant jumping mechanism based on a dielectric elastomer actuator. Smart Mater. Struct. 2019, 28, 09LT01. [Google Scholar] [CrossRef]
- Zhao, J.; Niu, J.; McCoul, D.; Leng, J.; Pei, Q. A rotary joint for a flapping wing actuated by dielectric elastomers: Design and experiment. Meccanica 2015, 50, 2815–2824. [Google Scholar] [CrossRef]
- Lau, G.-K.; Lim, H.-T.; Teo, J.-Y.; Chin, Y.-W. Lightweight mechanical amplifiers for rolled dielectric elastomer actuators and their integration with bio-inspired wing flappers. Smart Mater. Struct. 2014, 23, 025021. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, H.; Mao, J.; Chirarattananon, P.; Helbling, E.F.; Hyun, N.-S.P.; Clarke, D.R.; Wood, R.J. Controlled flight of a microrobot powered by soft artificial muscles. Nature 2019, 575, 324–329. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Xu, S.; Ren, Z.; Chirarattananon, P. Collision Resilient Insect-Scale Soft-Actuated Aerial Robots With High Agility. IEEE Trans. Robot. 2021, 37, 1752–1764. [Google Scholar] [CrossRef]
- Kim, S.; Hsiao, Y.-H.; Chen, Y.F.; Mao, J.; Chen, Y. FireFly: An Insect-Scale Aerial Robot Powered by Electroluminescent Soft Artificial Muscles. IEEE Robot. Autom. Lett. 2022, 7, 6950–6957. [Google Scholar] [CrossRef]
- Ren, Z.; Yang, J.; Kim, S.; Hsiao, Y.-H.; Lang, J.; Chen, Y. A lightweight high-voltage boost circuit for soft-actuated micro-aerial-robots. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation (ICRA), London, UK, 29 May–2 June 2023; pp. 3397–3403. [Google Scholar] [CrossRef]
- Lee, Y.; Ren, Z.; Hsiao, Y.-H.; Kim, S.; Song, W.J.; Lee, C.; Chen, Y. Liftoff of a soft-actuated micro-aerial-robot powered by triboelectric nanogenerators. Nano Energy 2024, 126, 109602. [Google Scholar] [CrossRef]
- Kovacs, G.; Lochmatter, P.; Wissler, M. An arm wrestling robot driven by dielectric elastomer actuators. Smart Mater. Struct. 2007, 16, S306–S317. [Google Scholar] [CrossRef]
- Lu, T.; Shi, Z.; Shi, Q.; Wang, T. Bioinspired bicipital muscle with fiber-constrained dielectric elastomer actuator. Extreme Mech. Lett. 2016, 6, 75–81. [Google Scholar] [CrossRef]
- Duduta, M.; Hajiesmaili, E.; Zhao, H.; Wood, R.J.; Clarke, D.R. Realizing the potential of dielectric elastomer artificial muscles. Proc. Natl. Acad. Sci. USA 2019, 116, 2476–2481. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wu, W.; Li, S.; Jiang, Y.; Zang, W.; Fu, W.; Hao, X.; Ning, N.; Tian, M.; Zhang, L. A Soft Mimic Robotic Arm Powered by Dielectric Elastomer Actuator. Adv. Funct. Mater. 2024, 34, 2411229. [Google Scholar] [CrossRef]
- Carpi, F.; De Rossi, D. Bioinspired Actuation of the Eyeballs of an Android Robotic Face: Concept and Preliminary Investigations. Bioinspir. Biomim. 2007, 2, S50–S63. [Google Scholar] [CrossRef]
- Luo, Z.; Xu, Z.P.; Li, J.S.; Zhu, J. Bioinspired Antagonist-Agonist Artificial Muscles for Humanoid Eyeball Motions. In Proceedings of the 2022 Ieee/Rsj International Conference on Intelligent Robots and Systems (Iros), Kyoto, Japan, 23–27 October 2022; pp. 4265–4270. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, J. Artificial muscles for jaw movements. Extreme Mech. Lett. 2016, 6, 88–95. [Google Scholar] [CrossRef]
- Gupta, U.; Wang, Y.; Ren, H.; Zhu, J. Dynamic Modeling and Feedforward Control of Jaw Movements Driven by Viscoelastic Artificial Muscles. IEEE/ASME Trans. Mechatron. 2018, 24, 25–35. [Google Scholar] [CrossRef]
- Ji, X.; Liu, X.; Cacucciolo, V.; Civet, Y.; Haitami, A.E.; Cantin, S.; Perriard, Y.; Shea, H. Untethered Feel-through Haptics Using 18-µm Thick Dielectric Elastomer Actuators. Adv. Funct. Mater. 2021, 31, 2006639. [Google Scholar] [CrossRef]
- Lee, H.S.; Phung, H.; Lee, D.-H.; Kim, U.K.; Nguyen, C.T.; Moon, H.; Koo, J.C.; Nam, J.-D.; Choi, H.R. Design analysis and fabrication of arrayed tactile display based on dielectric elastomer actuator. Sens. Actuators A Phys. 2014, 205, 191–198. [Google Scholar] [CrossRef]
- Allen, D.P.; Little, R.; Laube, J.; Warren, J.; Voit, W.; Gregg, R.D. Towards an ankle-foot orthosis powered by a dielectric elastomer actuator. Mechatronics 2021, 76, 102551. [Google Scholar] [CrossRef]
- Amin, H.; Assal, S.F.M.; Iwata, H. A new hand rehabilitation system based on the cable-driven mechanism and dielectric elastomer actuator. Mech. Sci. 2020, 11, 357–369. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, L.; Fan, J.; Yu, K.; Liu, Y.; Shi, L.; Leng, J. New Silicone Dielectric Elastomers with a High Dielectric Constant. Model. Signal Process. Control. Smart Struct. 2008, 6926, 271–278. [Google Scholar] [CrossRef]
- Lotz, P.; Matysek, M.; Lechner, P.; Hamann, M.; Schlaak, H.F. Dielectric Elastomer Actuators Using Improved Thin Film Processing and Nanosized Particles. Electroact. Polym. Actuators Devices 2008, 6927, 659–668. [Google Scholar] [CrossRef]
- Razzaghi-Kashani, M.; Gharavi, N.; Javadi, S. The effect of organo-clay on the dielectric properties of silicone rubber. Smart Mater. Struct. 2008, 17, 065035. [Google Scholar] [CrossRef]
- Zhang, Q.M.; Su, J.; Kim, C.H.; Ting, R.; Capps, R. An experimental investigation of electromechanical responses in a polyurethane elastomer. J. Appl. Phys. 1997, 81, 2770–2776. [Google Scholar] [CrossRef]
- Nam, J.-D.; Hwang, S.D.; Choi, H.R.; Lee, J.H.; Kim, K.J.; Heo, S. Electrostrictive polymer nanocomposites exhibiting tunable electrical properties. Smart Mater. Struct. 2004, 14, 87–90. [Google Scholar] [CrossRef]
- Zhang, X.; Wissler, M.; Jaehne, B.; Breonnimann, R.; Kovacs, G. Effects of Crosslinking, Prestrain and Dielectric Filler on the Electromechanical Response of a New Silicone and Comparison with Acrylic Elastomer. In Proceedings of the Smart Structures and Materials 2004: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, UA, 27 July 2004; Volume 5385, pp. 78–86. [Google Scholar] [CrossRef]
- Ha, S.M.; Yuan, W.; Pei, Q.B.; Pelrine, R.; Stanford, S. Interpenetrating Polymer Networks for High-Performance Elec-troelastomer Artificial Muscles. Adv. Mater. 2006, 18, 887–891. [Google Scholar] [CrossRef]
- Ha, S.M.; Yuan, W.; Pei, Q.B.; Pelrine, R.; Stanford, S. New High-Performance Electroelastomer Based on Interpenetrating Polymer Networks. In Proceedings of the Smart Structures and Materials 2006: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, CA, USA, 17 March 2006; Volume 6168, pp. 70–81. [Google Scholar] [CrossRef]
- Nguyen, H.C.; Doan, V.T.; Park, J.; Koo, J.C.; Lee, Y.; Nam, J.-D.; Choi, H.R. The effects of additives on the actuating performances of a dielectric elastomer actuator. Smart Mater. Struct. 2008, 18, 015006. [Google Scholar] [CrossRef]
- Ning, N.; Ma, Q.; Liu, S.; Tian, M.; Zhang, L.; Nishi, T. Tailoring Dielectric and Actuated Properties of Elastomer Composites by Bioinspired Poly(dopamine) Encapsulated Graphene Oxide. ACS Appl. Mater. Interfaces 2015, 7, 10755–10762. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, F.; Ma, L.; Zhang, Z.; Meng, E.; Zeng, C.; Zhang, H.; Guo, D. Vinylsilane-Rich Silicone Filled by Polydi-methylsiloxane Encapsulated Carbon Black Particles for Dielectric Elastomer Actuator with Enhanced out-of-Plane Actua-tions. Chem. Eng. J. 2022, 428, 131354. [Google Scholar] [CrossRef]
- Yang, D.; Ge, F.; Tian, M.; Ning, N.; Zhang, L.; Zhao, C.; Ito, K.; Nishi, T.; Wang, H.; Luan, Y. Dielectric elastomer actuator with excellent electromechanical performance using slide-ring materials/barium titanate composites. J. Mater. Chem. A 2015, 3, 9468–9479. [Google Scholar] [CrossRef]
- Poikelispää, M.; Shakun, A.; Das, A.; Vuorinen, J. Improvement of actuation performance of dielectric elastomers by barium titanate and carbon black fillers. J. Appl. Polym. Sci. 2016, 133, 44116. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhang, E.; Plamthottam, R.; Pei, Q. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations. Accounts Chem. Res. 2019, 52, 316–325. [Google Scholar] [CrossRef]
- Kussmaul, B.; Risse, S.; Kofod, G.; Waché, R.; Wegener, M.; McCarthy, D.N.; Krüger, H.; Gerhard, R. Enhancement of Di-electric Permittivity and Electromechanical Response in Silicone Elastomers: Molecular Grafting of Organic Dipoles to the Macromolecular Network. Adv. Funct. Mater. 2011, 21, 4589–4594. [Google Scholar] [CrossRef]
- Ankit; Tiwari, N.; Ho, F.; Krisnadi, F.; Kulkarni, M.R.; Nguyen, L.L.; Koh, S.J.A.; Mathews, N. High-k, Ultrastretchable Self-Enclosed Ionic Liquid-Elastomer Composites for Soft Robotics and Flexible Electronics. ACS Appl. Mater. Interfaces 2020, 12, 37561–37570. [Google Scholar] [CrossRef]
- Xu, B.-X.; Mueller, R.; Theis, A.; Klassen, M.; Gross, D. Dynamic analysis of dielectric elastomer actuators. Appl. Phys. Lett. 2012, 100, 112903. [Google Scholar] [CrossRef]
- Zou, J.; Kassim, S.O.; Ren, J.; Vaziri, V.; Aphale, S.S.; Gu, G. A Generalized Motion Control Framework of Dielectric Elastomer Actuators: Dynamic Modeling, Sliding-Mode Control and Experimental Evaluation. IEEE Trans. Robot. 2023, 40, 919–935. [Google Scholar] [CrossRef]
- Suo, Z.G. Theory of Dielectric Elastomers. Acta Mech. Solida Sin. 2010, 23, 549–578. [Google Scholar] [CrossRef]
- Zhao, X.; Suo, Z. Theory of Dielectric Elastomers Capable of Giant Deformation of Actuation. Phys. Rev. Lett. 2010, 104, 178302. [Google Scholar] [CrossRef]
- Keplinger, C.; Li, T.; Baumgartner, R.; Suo, Z.; Bauer, S. Harnessing snap-through instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter 2011, 8, 285–288. [Google Scholar] [CrossRef]
- Li, T.; Keplinger, C.; Baumgartner, R.; Bauer, S.; Yang, W.; Suo, Z. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. J. Mech. Phys. Solids 2013, 61, 611–628. [Google Scholar] [CrossRef]
- Gu, G.-Y.; Gupta, U.; Zhu, J.; Zhu, L.-M.; Zhu, X. Modeling of Viscoelastic Electromechanical Behavior in a Soft Dielectric Elastomer Actuator. IEEE Trans. Robot. 2017, 33, 1263–1271. [Google Scholar] [CrossRef]
- Jeong, S.M.; Kyung, K.-U. Long-term Multiple Time-Constant Model of a Spring Roll Dielectric Elastomer Actuator under Dynamic Loading. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 11415–11421. [Google Scholar] [CrossRef]
- Huang, P.; Wu, J.; Zhang, P.; Wang, Y.; Su, C.-Y. Dynamic Modeling and Tracking Control for Dielectric Elastomer Actuator With a Model Predictive Controller. IEEE Trans. Ind. Electron. 2021, 69, 1819–1828. [Google Scholar] [CrossRef]
- Massenio, P.R.; Rizzello, G.; Comitangelo, G.; Naso, D.; Seelecke, S. Reinforcement Learning-Based Minimum Energy Position Control of Dielectric Elastomer Actuators. IEEE Trans. Control. Syst. Technol. 2020, 29, 1674–1688. [Google Scholar] [CrossRef]
- Matysek, M.; Lotz, P.; Schlaak, H.F. Lifetime Investigation of Dielectric Elastomer Stack Actuators. IEEE Trans. Dielectr. Electr. Insul. 2011, 18, 89–96. [Google Scholar] [CrossRef]
- Zakaria, S.; Yu, L.; Kofod, G.; Skov, A.L. The influence of static pre-stretching on the mechanical ageing of filled silicone rubbers for dielectric elastomer applications. Mater. Today Commun. 2015, 4, 204–213. [Google Scholar] [CrossRef]
- Gisby, T.A.; Xie, S.Q.; Calius, E.P.; Anderson, I.A. Leakage Current as a Predictor of Failure in Dielectric Elastomer Actuators. In Proceedings of the Electroactive Polymer Actuators and Devices (EAPAD) 2010, San Diego, CA, USA, 9 April 2010; Volume 7642, p. 764213. [Google Scholar] [CrossRef]
- La, T.-G.; Lau, G.-K. Very high dielectric strength for dielectric elastomer actuators in liquid dielectric immersion. Appl. Phys. Lett. 2013, 102, 192905. [Google Scholar] [CrossRef]
Type | Pre-Strain (x,y) (%) | Maximum Area Strain (%) | Young’s Modulus (MPa) | Electric Field (V/μm) | Dielectric Permittivity | References | |
---|---|---|---|---|---|---|---|
Acrylic polymer | 3M VHB 4910 | (300,300) | 158 | 3 | 412 | 4.8@1 kHz | [58] |
3M VHB 4910 | (540, 75) | 215 | - | 239 | 4.8@1 kHz | [58] | |
VHB-poly (TMPTMA) | (400, 400) | 300 | 4 | 420 | - | [59] | |
VHB-IPN-P | (250, 250) | 185 | 0.48 | 66 | - | [60] | |
PHDE | - | 189 | 1.3 | 120 | 5.35@1 kHz | [26] | |
PIL/VHB 4905 | (200, 200) | 133 | 0.21 | 17 | 16.4@1 kHz | [61] | |
PUA-PEGDA-15 | - | 71.4 | 0.323@10% | 24.2 | 9.4@1 kHz | [62] | |
Silicone polymer | Nusil CF19-2186 | (45, 45) | 64 | 1 | 350 | 2.8@1 kHz | [58] |
Dow Corning HS3 | (68, 68) | 93 | 0.1 | 93 | 2.8@1 kHz | [58] | |
Bottlebrush polymer based on PDMS | - | >300 | - | <10 | - | [63] | |
exo-E62′ | - | 12 | 0.019@10% | 15 | 3.02@10 kHz | [64] | |
SR5 (5% 81-R/ silicone elastomer) | (40, 40) | 10 | 0.35 | 32 | 3.25 | [65] | |
C2 | - | 20 | 0.154@10% | 10.8 | 10.1@10 kHz | [66] | |
E-CL2-3 | - | 14 | 0.628@10% | 24.2 | 18.4@10 kHz | [67] | |
90 phr BmimSbF6/ silicone elastomer | - | - | 0.15 | 7.5 | [email protected] Hz | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Yu, W.; Zhao, J.; Meng, C.; Guo, S. A Review of the Applications and Challenges of Dielectric Elastomer Actuators in Soft Robotics. Machines 2025, 13, 101. https://doi.org/10.3390/machines13020101
Zhang Q, Yu W, Zhao J, Meng C, Guo S. A Review of the Applications and Challenges of Dielectric Elastomer Actuators in Soft Robotics. Machines. 2025; 13(2):101. https://doi.org/10.3390/machines13020101
Chicago/Turabian StyleZhang, Qinghai, Wei Yu, Jianghua Zhao, Chuizhou Meng, and Shijie Guo. 2025. "A Review of the Applications and Challenges of Dielectric Elastomer Actuators in Soft Robotics" Machines 13, no. 2: 101. https://doi.org/10.3390/machines13020101
APA StyleZhang, Q., Yu, W., Zhao, J., Meng, C., & Guo, S. (2025). A Review of the Applications and Challenges of Dielectric Elastomer Actuators in Soft Robotics. Machines, 13(2), 101. https://doi.org/10.3390/machines13020101