Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer
Abstract
:1. Introduction
2. The State of the Art
3. Methodology
4. Implementation
5. The Use Case
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chryssolouris, G. Manufacturing Systems: Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2013; ISBN 1-4757-2213-3. [Google Scholar]
- Mitra, A. Fundamentals of Quality Control and Improvement; John Wiley & Sons: Hoboken, NJ, USA, 2016; ISBN 1-118-70514-9. [Google Scholar]
- Chryssolouris, G.; Papakostas, N.; Mavrikios, D. A Perspective on Manufacturing Strategy: Produce More with Less. CIRP J. Manuf. Sci. Technol. 2008, 1, 45–52. [Google Scholar] [CrossRef]
- Colledani, M.; Tolio, T.; Fischer, A.; Iung, B.; Lanza, G.; Schmitt, R.; Váncza, J. Design and Management of Manufacturing Systems for Production Quality. CIRP Ann. 2014, 63, 773–796. [Google Scholar] [CrossRef]
- Nikolakis, N.; Catti, P.; Chaloulos, A.; van de Kamp, W.; Coy, M.P.; Alexopoulos, K. A Methodology to Assess Circular Economy Strategies for Sustainable Manufacturing Using Process Eco-Efficiency. J. Clean. Prod. 2024, 445, 141289. [Google Scholar] [CrossRef]
- Raisul Islam, M.; Zakir Hossain Zamil, M.; Eshmam Rayed, M.; Mohsin Kabir, M.; Mridha, M.F.; Nishimura, S.; Shin, J. Deep Learning and Computer Vision Techniques for Enhanced Quality Control in Manufacturing Processes. IEEE Access 2024, 12, 121449–121479. [Google Scholar] [CrossRef]
- Taatali, A.; Sadaoui, S.E.; Louar, M.A.; Mahiddini, B. On-Machine Dimensional Inspection: Machine Vision-Based Approach. Int. J. Adv. Manuf. Technol. 2024, 131, 393–407. [Google Scholar] [CrossRef]
- Khan, A.; Mineo, C.; Dobie, G.; Macleod, C.; Pierce, G. Vision Guided Robotic Inspection for Parts in Manufacturing and Remanufacturing Industry. J. Remanufactur. 2021, 11, 49–70. [Google Scholar] [CrossRef]
- Sioma, A. 3D Imaging Methods in Quality Inspection Systems. SPIE 2019, 11176, 111760L. [Google Scholar]
- Rezaei-Malek, M.; Mohammadi, M.; Dantan, J.-Y.; Siadat, A.; Tavakkoli-Moghaddam, R. A Review on Optimisation of Part Quality Inspection Planning in a Multi-Stage Manufacturing System. Int. J. Prod. Res. 2019, 57, 4880–4897. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, X.; Kong, L.; Dong, G.; Remani, A.; Leach, R. Defect Inspection Technologies for Additive Manufacturing. Int. J. Extrem. Manuf. 2021, 3, 022002. [Google Scholar] [CrossRef]
- Verna, E.; Genta, G.; Galetto, M.; Franceschini, F. Planning Offline Inspection Strategies in Low-Volume Manufacturing Processes. Qual. Eng. 2020, 32, 705–720. [Google Scholar] [CrossRef]
- Gao, Y.; Li, X.; Wang, X.V.; Wang, L.; Gao, L. A Review on Recent Advances in Vision-Based Defect Recognition towards Industrial Intelligence. J. Manuf. Syst. 2022, 62, 753–766. [Google Scholar] [CrossRef]
- Neogi, N.; Mohanta, D.K.; Dutta, P.K. Review of Vision-Based Steel Surface Inspection Systems. J. Image Video Proc. 2014, 2014, 50. [Google Scholar] [CrossRef]
- Park, M.; Jeong, J. Design and Implementation of Machine Vision-Based Quality Inspection System in Mask Manufacturing Process. Sustainability 2022, 14, 6009. [Google Scholar] [CrossRef]
- Nascimento, R.; Martins, I.; Dutra, T.A.; Moreira, L. Computer Vision Based Quality Control for Additive Manufacturing Parts. Int. J. Adv. Manuf. Technol. 2023, 124, 3241–3256. [Google Scholar] [CrossRef]
- Zhou, L.; Zhang, L.; Konz, N. Computer Vision Techniques in Manufacturing. IEEE Trans. Syst. Man Cybern. Syst. 2023, 53, 105–117. [Google Scholar] [CrossRef]
- Swojak, N.; Wieczorowski, M.; Jakubowicz, M. Assessment of Selected Metrological Properties of Laser Triangulation Sensors. Measurement 2021, 176, 109190. [Google Scholar] [CrossRef]
- Álvarez, I.; Enguita, J.M.; Frade, M.; Marina, J.; Ojea, G. On-Line Metrology with Conoscopic Holography: Beyond Triangulation. Sensors 2009, 9, 7021–7037. [Google Scholar] [CrossRef]
- Huang, W.; Kovacevic, R. A Laser-Based Vision System for Weld Quality Inspection. Sensors 2011, 11, 506–521. [Google Scholar] [CrossRef]
- Brosed, F.J.; Aguilar, J.J.; Guillomía, D.; Santolaria, J. 3D Geometrical Inspection of Complex Geometry Parts Using a Novel Laser Triangulation Sensor and a Robot. Sensors 2010, 11, 90–110. [Google Scholar] [CrossRef]
- Huo, L.; Liu, Y.; Yang, Y.; Zhuang, Z.; Sun, M. Review: Research on Product Surface Quality Inspection Technology Based on 3D Point Cloud. Adv. Mech. Eng. 2023, 15, 16878132231159523. [Google Scholar] [CrossRef]
- Belšak, R.; Gotlih, J.; Karner, T. Simulating and Verifying a 2D/3D Laser Line Sensor Measurement Algorithm on CAD Models and Real Objects. Sensors 2024, 24, 7396. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Zhang, X.; Jiang, X.; Hong, T. Research on Point Cloud Processing of Gear 3D Measurement Based on Line Laser. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 645. [Google Scholar] [CrossRef]
- Heczko, D.; Oščádal, P.; Kot, T.; Huczala, D.; Semjon, J.; Bobovský, Z. Increasing the Reliability of Data Collection of Laser Line Triangulation Sensor by Proper Placement of the Sensor. Sensors 2021, 21, 2890. [Google Scholar] [CrossRef]
- So, E.W.Y.; Michieletto, S.; Menegatti, E. Calibration of a Dual-Laser Triangulation System for Assembly Line Completeness Inspection. In Proceedings of the 2012 IEEE International Symposium on Robotic and Sensors Environments Proceedings, Magdeburg, Germany, 16–18 November 2012; IEEE: Magdeburg, Germany, 2012; pp. 138–143. [Google Scholar]
- Denayer, M.; De Winter, J.; Bernardes, E.; Vanderborght, B.; Verstraten, T. Comparison of Point Cloud Registration Techniques on Scanned Physical Objects. Sensors 2024, 24, 2142. [Google Scholar] [CrossRef]
- Liu, J. An Adaptive Process of Reverse Engineering from Point Clouds to CAD Models. Int. J. Comput. Integr. Manuf. 2020, 33, 840–858. [Google Scholar] [CrossRef]
- Sundaram, S.; Zeid, A. Artificial Intelligence-Based Smart Quality Inspection for Manufacturing. Micromachines 2023, 14, 570. [Google Scholar] [CrossRef]
- Papacharalampopoulos, A.; Alexopoulos, K.; Catti, P.; Stavropoulos, P.; Chryssolouris, G. Learning More with Less Data in Manufacturing: The Case of Turning Tool Wear Assessment through Active and Transfer Learning. Processes 2024, 12, 1262. [Google Scholar] [CrossRef]
- Alexopoulos, K.; Catti, P.; Kanellopoulos, G.; Nikolakis, N.; Blatsiotis, A.; Christodoulopoulos, K.; Kaimenopoulos, A.; Ziata, E. Deep Learning for Estimating the Fill-Level of Industrial Waste Containers of Metal Scrap: A Case Study of a Copper Tube Plant. Appl. Sci. 2023, 13, 2575. [Google Scholar] [CrossRef]
- Cerquitelli, T.; Nikolakis, N.; O’Mahony, N.; Macii, E.; Ippolito, M.; Makris, S. (Eds.) Predictive Maintenance in Smart Factories: Architectures, Methodologies, and Use-Cases; Information Fusion and Data Science; Springer: Singapore, 2021; ISBN 9789811629396. [Google Scholar]
- Zhang, Y.; Feng, W.; Quan, Y.; Ye, G.; Dauphin, G. Dynamic Spatial–Spectral Feature Optimization-Based Point Cloud Classification. Remote Sens. 2024, 16, 575. [Google Scholar] [CrossRef]
- Liu, Y.; Fan, B.; Xiang, S.; Pan, C. Relation-Shape Convolutional Neural Network for Point Cloud Analysis. arXiv 2019, arXiv:1904.07601. [Google Scholar]
- Li, G.; Liu, C.; Gao, X.; Xiao, H.; Ling, B.W.-K. AFpoint: Adaptively Fusing Local and Global Features for Point Cloud. Multimed. Tools Appl. 2024, 83, 79093–79115. [Google Scholar] [CrossRef]
- Meng, X.; Lu, X.; Ye, H.; Yang, B.; Cao, F. A New Self-Augment CNN for 3D Point Cloud Classification and Segmentation. Int. J. Mach. Learn. Cyber. 2024, 15, 807–818. [Google Scholar] [CrossRef]
- Sun, T.; Liu, M.; Ye, H.; Yeung, D.-Y. Point-Cloud-Based Place Recognition Using CNN Feature Extraction. IEEE Sens. J. 2019, 19, 12175–12186. [Google Scholar] [CrossRef]
- Tong, G.; Shao, Y.; Peng, H. Learning Local Contextual Features for 3D Point Clouds Semantic Segmentation by Attentive Kernel Convolution. Vis. Comput. 2024, 40, 831–847. [Google Scholar] [CrossRef]
- Haznedar, B.; Bayraktar, R.; Ozturk, A.E.; Arayici, Y. Implementing PointNet for Point Cloud Segmentation in the Heritage Context. Herit. Sci. 2023, 11, 2. [Google Scholar] [CrossRef]
- Liu, H.; Tian, S. Deep 3D Point Cloud Classification and Segmentation Network Based on GateNet. Vis. Comput. 2024, 40, 971–981. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Liu, Y. Three-Dimensional Point Cloud Segmentation Based on Context Feature for Sheet Metal Part Boundary Recognition. IEEE Trans. Instrum. Meas. 2023, 72, 2513710. [Google Scholar] [CrossRef]
- Qi, C.R.; Yi, L.; Su, H.; Guibas, L.J. PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space. arXiv 2017, arXiv:1706.02413. [Google Scholar]
- Lin, W.; Fan, W.; Liu, H.; Xu, Y.; Wu, J. Classification of Handheld Laser Scanning Tree Point Cloud Based on Different KNN Algorithms and Random Forest Algorithm. Forests 2021, 12, 292. [Google Scholar] [CrossRef]
- Luo, N.; Wang, Y.; Gao, Y.; Tian, Y.; Wang, Q.; Jing, C. kNN-Based Feature Learning Network for Semantic Segmentation of Point Cloud Data. Pattern Recognit. Lett. 2021, 152, 365–371. [Google Scholar] [CrossRef]
- Li, L.; Sung, M.; Dubrovina, A.; Yi, L.; Guibas, L.J. Supervised Fitting of Geometric Primitives to 3D Point Clouds. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA, 15–20 June 2019; pp. 2647–2655. [Google Scholar]
- ISO/IEC Guide 98-3:2008; Uncertainty of Measurement: Part 3: Guide to the Expression of Uncertainty in Measurement (GUM:1995). ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/50461.html (accessed on 10 December 2024).
- Pant, M.; Nagdeve, L.; Moona, G.; Kumar, H. Estimation of Measurement Uncertainty of Additive Manufacturing Parts to Investigate the Influence of Process Variables. MAPAN 2022, 37, 765–775. [Google Scholar] [CrossRef]
- Giulietti, N.; Chiariotti, P.; Revel, G.M. Automated Measurement of Geometric Features in Curvilinear Structures Exploiting Steger’s Algorithm. Sensors 2023, 23, 4023. [Google Scholar] [CrossRef] [PubMed]
- Khakpour, R.; Ebrahimi, A.; Seyed-Hosseini, S.-M. An Integrated Approach of Zero Defect Manufacturing and Process Mining to Avoid Defect Occurrence in Production and Improve Sustainability. Int. J. Lean Six Sigma, 2024; ahead-of-print. [Google Scholar] [CrossRef]
- Pham, A.-D.; Ahn, H.-J. High Precision Reducers for Industrial Robots Driving 4th Industrial Revolution: State of Arts, Analysis, Design, Performance Evaluation and Perspective. Int. J. Precis. Eng. Manuf.-Green Technol. 2018, 5, 519–533. [Google Scholar] [CrossRef]
- Abreu, N.; Pinto, A.; Matos, A.; Pires, M. Procedural Point Cloud Modelling in Scan-to-BIM and Scan-vs-BIM Applications: A Review. ISPRS Int. J. Geo-Inf. 2023, 12, 260. [Google Scholar] [CrossRef]
Product Type | Repeatability Point Clouds | Reproducibility Point Clouds | Total Number of Point Clouds per Product Type |
---|---|---|---|
SM | 15 | 15 | 30 |
SN | 16 | 20 | 36 |
SJ | 80 | 80 | 160 |
Measurements | Tolerances (mm) |
---|---|
V27 Top Diameter | |
V27 Bottom Diameter | |
V7 Bottom Left Diamer | |
V7 Top Left Diameter | |
V7 Bottom Middle Diam. | |
V7 Top Middle Diam. | |
V7 Bottom Right Diam. | |
V7 Top Right Diam. | |
Middle Holes Distance | |
V5 Bottom | |
V5 Top | |
V6 Bottom | |
V6 Top | |
V8 Left | <6 |
V8 Right | <6 |
Dimensional Features | Mean | Uncertainty | Confidence Intervals | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Standard | Expanded | Lower | Upper | |||||||||||||
Measurements (mm) | SN | SM | SJ | SN | SM | SJ | SN | SM | SJ | SN | SM | SJ | SN | SM | SJ | |
Radiuses of holes | V27 Top | 11.9 | 12.3 | 12.1 | 0.006 | 0.010 | 0.02 | 0.012 | 0.020 | 0.041 | 11.8 | 12.2 | 12 | 11.9 | 12.3 | 12 |
V27 Bottom | 12.4 | 12.1 | 12 | 0.057 | 0.024 | 0.009 | 0.115 | 0.049 | 0.019 | 12.3 | 12 | 12 | 12.5 | 12.1 | 12 | |
V7 Top Left | 6.8 1 | 6.5 | 6.9 | 0.012 | 0.025 | 0.027 | 0.024 | 0.051 | 0.055 | 6.7 | 6.5 | 6.9 | 6.8 | 6.6 | 7 | |
V7 Top Right | 6.6 | 6.5 | 6.8 | 0.011 | 0.009 | 0.025 | 0.023 | 0.018 | 0.050 | 6.6 | 6.5 | 6.7 | 6.6 | 6.5 | 6 | |
V7 Bottom Right | 6.8 | 6.5 | 6.7 | 0.072 | 0.013 | 0.022 | 0.143 | 0.026 | 0.045 | 6.6 | 6.5 | 6.7 | 6.9 | 6.5 | 6 | |
V7 Bottom Left | 6.8 | 6.5 | 7 | 0.008 | 0.020 | 0.026 | 0.016 | 0.040 | 0.053 | 6.8 | 6.4 | 6.9 | 6.8 | 6.5 | 7 | |
V7 Top Middle | 6.7 | N/A 2 | 6.8 | 0.014 | N/A | 0.025 | 0.028 | N/A | 0.05 | 6.6 | N/A | 6.8 | 6.7 | N/A | 6.9 | |
V7 Bottom Middle | 6.6 | N/A | 6.8 | 0.010 | N/A | 0.025 | 0.020 | N/A | 0.05 | 6.6 | N/A | 6.7 | 6.6 | N/A | 6.8 | |
Distances | Middle Holes | 104.1 | 103.9 | 104 | 0.037 | 0.022 | 0.027 | 0.074 | 0.043 | 0.054 | 104 | 103 | 103 | 104 | 104 | 104 |
V5 Top | 64.1 | 42.15 | 64.4 | 0.105 | 0.065 | 0.086 | 0.211 | 0.130 | 0.173 | 63.9 | 42 | 64.2 | 64.4 | 42 | 64.6 | |
V5 Bottom | 67.4 | 42.1 | 62.8 | 0.105 | 0.082 | 0.052 | 0.210 | 0.165 | 0.056 | 67.2 | 42 | 62.7 | 67.6 | 42 | 62.9 | |
V6 Top Side | 141.3 | 142.6 | 140 | 0.014 | 0.055 | 0.028 | 0.028 | 0.110 | 0.126 | 141 | 142 | 139.9 | 141 | 142 | 140 | |
V6 Bottom Side | 141.4 | 142.7 | 140.1 | 0.038 | 0.081 | 0.024 | 0.075 | 0.162 | 0.048 | 141 | 142 | 140.1 | 141 | 142 | 140.2 | |
V8 Left | 0.7 | 3.1 | 1.8 | 0.063 | 0.072 | 0.063 | 0.126 | 0.143 | 0.126 | 0.6 | 3.0 | 1.7 | 0.86 | 3.3 | 2.0 | |
V8 Right | 5.8 | 3.3 | 2.9 | 0.150 | 0.069 | 0.054 | 0.300 | 0.138 | 0.108 | 5.5 | 3.2 | 2.8 | 6.16 | 3.4 | 3.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntoulmperis, M.; Discepolo, S.; Castellini, P.; Catti, P.; Nikolakis, N.; van de Kamp, W.; Alexopoulos, K. Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer. Machines 2025, 13, 88. https://doi.org/10.3390/machines13020088
Ntoulmperis M, Discepolo S, Castellini P, Catti P, Nikolakis N, van de Kamp W, Alexopoulos K. Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer. Machines. 2025; 13(2):88. https://doi.org/10.3390/machines13020088
Chicago/Turabian StyleNtoulmperis, Michalis, Silvia Discepolo, Paolo Castellini, Paolo Catti, Nikolaos Nikolakis, Wilhelm van de Kamp, and Kosmas Alexopoulos. 2025. "Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer" Machines 13, no. 2: 88. https://doi.org/10.3390/machines13020088
APA StyleNtoulmperis, M., Discepolo, S., Castellini, P., Catti, P., Nikolakis, N., van de Kamp, W., & Alexopoulos, K. (2025). Inline-Acquired Product Point Clouds for Non-Destructive Testing: A Case Study of a Steel Part Manufacturer. Machines, 13(2), 88. https://doi.org/10.3390/machines13020088