NiTi Alloy Quasi-Zero Stiffness Vibration Isolation Structure with Adjustable Mechanical Properties
Abstract
:1. Introduction
2. Design and Materials
2.1. The Configuration Designs and Theoretical Analysis of Vibration Isolation Structures
2.2. Material Preparation and Characterization
3. Results and Discussions
3.1. The Heat Treatment for the Phase Transformation Behavior of SMA
3.2. Temperature Response of Vibration Isolation Structure
3.3. The Static Mechanical Performance of NiTi Alloy
3.4. The Heat Treatment for the Static Response of Structure
3.5. The Static Response of the NiTi Alloy Vibration Isolation Structure
3.6. Vibration Isolation Performances of the NiTi Alloy Structures
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al Rifaie, M.; Abdulhadi, H.; Mian, A. Advances in mechanical metamaterials for vibration isolation: A review. Adv. Mech. Eng. 2022, 14, 16878132221082872. [Google Scholar] [CrossRef]
- Zhou, W.Y.; Li, D.X.; Luo, Q.; Liu, K. Analysis and Testing of Microvibrations Produced by Momentum Wheel Assemblies. Chin. J. Aeronaut. 2012, 25, 640–649. [Google Scholar] [CrossRef]
- Deng, X.; Pan, Z.W.; Xing, J.W.; Zhang, Z.Y.; Li, Y.X.; Yan, M.S.; Dong, X.M. Controllability analysis and intelligent control of magnetorheological whole-satellite under small amplitude and medium-high frequency vibration. J. Intell. Mater. Syst. Struct. 2023, 34, 229–248. [Google Scholar] [CrossRef]
- Li, L.; Wang, L.; Yuan, L.; Zheng, R.; Wu, Y.P.; Sui, J.; Zhong, J. Micro-vibration suppression methods and key technologies for high-precision space optical instruments. Acta Astronaut. 2021, 180, 417–428. [Google Scholar] [CrossRef]
- Rivin, E.I. Vibration isolation of precision equipment. Precis. Eng. 1995, 17, 41–56. [Google Scholar] [CrossRef]
- Yan, G.; Zou, H.-X.; Wang, S.; Zhao, L.-C.; Wu, Z.-Y.; Zhang, W.-M. Bio-inspired vibration isolation: Methodology and design. Appl. Mech. Rev. 2021, 73, 020801. [Google Scholar] [CrossRef]
- Ma, R.; Bi, K.; Hao, H. Inerter-based structural vibration control: A state-of-the-art review. Eng. Struct. 2021, 243, 112655. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, J.; Han, B.; Zhu, Z.; Wang, S.; Wang, J.; Yang, X.; Cai, R.; Du, C.; Zeng, J. A Review of Linear Compressor Vibration Isolation Methods. Processes 2024, 12, 2210. [Google Scholar] [CrossRef]
- Niu, M.-Q.; Chen, L.-Q. Analysis of a bio-inspired vibration isolator with a compliant limb-like structure. Mech. Syst. Signal Process. 2022, 179, 109348. [Google Scholar] [CrossRef]
- Ji, J.; Zhang, N. Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber. J. Sound Vib. 2010, 329, 2044–2056. [Google Scholar] [CrossRef]
- Ning, C.; Zhichun, Y.; Te, Y.; Yizhou, S.; Wei, T.; Yanlong, X. Design of low-frequency circular metastructure isolators with high-load-bearing capacity. Chin. J. Aeronaut. 2024, 37, 207–220. [Google Scholar]
- Yan, G.; Lu, J.-J.; Qi, W.-H.; Liu, F.-R.; Yan, H.; Zhao, L.-C.; Wu, Z.-Y.; Zhang, W.-M. Linear and nonlinear stiffness compensation for low-frequency vibration isolation: A comparative study. Nonlinear Dyn. 2024, 112, 5955–5973. [Google Scholar] [CrossRef]
- Chen, N.; Yang, Z.; Zuo, A.; Jiang, P.; Jin, S.; Xu, Y. Bandgap regulations of longitudinal wave for a nonlinear metastructure isolator with high-static-low-dynamic stiffness. Compos. Struct. 2024, 327, 117706. [Google Scholar] [CrossRef]
- Yan, B.; Yu, N.; Wu, C.Y. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms. Appl. Math. Mech. 2022, 43, 1045–1062. [Google Scholar] [CrossRef]
- Abbasi, A.; Khadem, S.E.; Bab, S. Vibration control of a continuous rotating shaft employing high-static low-dynamic stiffness isolators. J. Vib. Control 2016, 24, 760–783. [Google Scholar] [CrossRef]
- Huang, X.C.; Liu, X.T.; Sun, J.Y.; Zhang, Z.Y.; Hua, H.X. Effect of the system imperfections on the dynamic response of a high-static-low-dynamic stiffness vibration isolator. Nonlinear Dyn. 2014, 76, 1157–1167. [Google Scholar] [CrossRef]
- Zuo, S.; Wang, D.Y.; Zhang, Y.S.; Luo, Q.T. Design and testing of a parabolic cam-roller quasi-zero-stiffness vibration isolator. Int. J. Mech. Sci. 2022, 220, 107146. [Google Scholar] [CrossRef]
- Jiang, G.Q.; Jing, X.J.; Guo, Y.Q. A novel bio-inspired multi-joint anti-vibration structure and its nonlinear HSLDS properties. Mech. Syst. Sig. Process. 2020, 138, 106552. [Google Scholar] [CrossRef]
- Zhao, F.; Cao, S.Q.; Luo, Q.T.; Li, L.Q.; Ji, J.C. Practical design of the QZS isolator with one pair of oblique bars by considering pre-compression and low-dynamic stiffness. Nonlinear Dyn. 2022, 108, 3313–3330. [Google Scholar] [CrossRef]
- Dong, G.X.; Zhang, X.N.; Xie, S.L.; Yan, B.; Luo, Y.J. Simulated and experimental studies on a high-static-low-dynamic stiffness isolator using magnetic negative stiffness spring. Mech. Syst. Sig. Process. 2017, 86, 188–203. [Google Scholar] [CrossRef]
- Yu, C.Y.; Fu, Q.D.; Zhang, J.R.; Zhang, N. The vibration isolation characteristics of torsion bar spring with negative stiffness structure. Mech. Syst. Sig. Process. 2022, 180, 109378. [Google Scholar] [CrossRef]
- Ma, Z.; Zhou, R.; Yang, Q. Recent advances in quasi-zero stiffness vibration isolation systems: An overview and future possibilities. Machines 2022, 10, 813. [Google Scholar] [CrossRef]
- Yan, G.; Zou, H.-X.; Wang, S.; Zhao, L.-C.; Gao, Q.-H.; Tan, T.; Zhang, W.-M. Large stroke quasi-zero stiffness vibration isolator using three-link mechanism. J. Sound Vib. 2020, 478, 115344. [Google Scholar] [CrossRef]
- Ye, K.; Ji, J.; Brown, T. Design of a quasi-zero stiffness isolation system for supporting different loads. J. Sound Vib. 2020, 471, 115198. [Google Scholar] [CrossRef]
- Etawy, M.S.; Nassar, G.E.; Mohammed, N.; Nawar, S.H.; Hassabo, A.G. 4D Printing of Stimuli-Responsive Materials. J.Text. Color. Polym. Sci. 2024, 21, 241–258. [Google Scholar] [CrossRef]
- Abavisani, I.; Rezaifar, O.; Kheyroddin, A. Multifunctional properties of shape memory materials in civil engineering applications: A state-of-the-art review. J. Build. Eng. 2021, 44, 102657. [Google Scholar] [CrossRef]
- Bogue, R. Shape-memory materials: A review of technology and applications. Assem. Autom. 2009, 29, 214–219. [Google Scholar] [CrossRef]
- Sreekumar, M.; Nagarajan, T.; Singaperumal, M.; Zoppi, M.; Molfino, R. Critical review of current trends in shape memory alloy actuators for intelligent robots. Ind. Robot. Int. J. 2007, 34, 285–294. [Google Scholar] [CrossRef]
- Behera, A.; Behera, A. Shape-memory materials. In Advanced Materials: An Introduction to Modern Materials Science; Springer Nature: Berlin/Heidelberg, Germany, 2022; pp. 1–42. [Google Scholar]
- Ebrahimi, M.; Attarilar, S.; Gode, C.; Kandavalli, S.R.; Shamsborhan, M.; Wang, Q. Conceptual analysis on severe plastic deformation processes of shape memory alloys: Mechanical properties and microstructure characterization. Metals 2023, 13, 447. [Google Scholar] [CrossRef]
- Park, S.K.; Diao, Y. Martensitic transition in molecular crystals for dynamic functional materials. Chem. Soc. Rev. 2020, 49, 8287–8314. [Google Scholar] [CrossRef]
- Kim, M.S.; Heo, J.K.; Rodrigue, H.; Lee, H.T.; Pané, S.; Han, M.W.; Ahn, S.H. Shape Memory Alloy (SMA) Actuators: The Role of Material, Form, and Scaling Effects. Adv. Mater. 2023, 35, 2208517. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.E.; Jung, H.J.; Lee, K.H. Motivating Collaborative Consumption in Fashion: Consumer Benefits, Perceived Risks, Service Trust, and Usage Intention of Online Fashion Rental Services. Sustainability 2021, 13, 1804. [Google Scholar] [CrossRef]
- Qiu, J.; Lang, J.H.; Slocum, A.H. A curved-beam bistable mechanism. J. Microelectromech. Syst. 2004, 13, 137–146. [Google Scholar] [CrossRef]
- Cai, C.Q.; Zhou, J.X.; Wu, L.C.; Wang, K.; Xu, D.L.; Ouyang, H.J. Design and numerical validation of quasi-zero-stiffness metamaterials for very low-frequency band gaps. Compos. Struct. 2020, 236, 111862. [Google Scholar] [CrossRef]
- Fan, H.G.; Yang, L.J.; Tian, Y.C.; Wang, Z.W. Design of metastructures with quasi-zero dynamic stiffness for vibration isolation. Compos. Struct. 2020, 243, 112244. [Google Scholar] [CrossRef]
- Lu, H.J.; Meng, L.X.; Wang, J.K.; Wang, Y.; Zhang, L.Z. Design and Performance Study of Metamaterial with Quasi-zero Stiffness Characteristics Based on Human Body Structure. J. Vib. Eng. Technol. 2024, 12, 633–648. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, B.; Wan, X.; Liu, Q.; Lin, X.; Wang, P. Influence of processing parameter on phase transformation and superelastic recovery strain of laser solid forming NiTi alloy. J. Alloys Compd. 2022, 908, 164568. [Google Scholar] [CrossRef]
- Pu, Z.; Du, D.; Wang, K.; Liu, G.; Zhang, D.; Wang, X.; Chang, B. Microstructure, phase transformation behavior and tensile superelasticity of NiTi shape memory alloys fabricated by the wire-based vacuum additive manufacturing. Mater. Sci. Eng. A 2021, 812, 141077. [Google Scholar] [CrossRef]
- Ma, J.; Yu, L.; Yang, Q.; Liu, J.; Yang, L. High-Superelasticity NiTi Shape Memory Alloy by Directed Energy Deposition-Arc and Solution Heat Treatment. Acta Metall. Sinica 2024, 37, 132–144. [Google Scholar] [CrossRef]
- Du, F.; Deng, L.; Zhang, M.; Gong, P.; Jin, J.; Liu, F.; Wang, X. Mechanical response and phase transformation characteristics of R-phase NiTi shape memory alloy under high strain rate compression. Mater. Today Commun. 2024, 39, 109353. [Google Scholar] [CrossRef]
- Li, B.; Wang, B.; Wang, L.; Oliveira, J.; Cui, R.; Wang, Y.; Zhu, G.; Yu, J.; Su, Y. Effect of post-heat treatments on the microstructure, martensitic transformation and functional performance of EBF3-fabricated NiTi shape memory alloy. Mater. Sci. Eng. A 2023, 871, 144897. [Google Scholar] [CrossRef]
- Hecker, S.; Harbur, D.; Zocco, T. Phase stability and phase transformations in Pu–Ga alloys. Prog. Mater Sci. 2004, 49, 429–485. [Google Scholar] [CrossRef]
- Roitburd, A.; Kurdjumov, G. The nature of martensitic transformations. Mater. Sci. Eng. 1979, 39, 141–167. [Google Scholar] [CrossRef]
() | () | () | () | () | () | () | () |
---|---|---|---|---|---|---|---|
0.2 | 10 | 12 | 70 | 0.2 | 10 | 5 | 40 |
Component Content | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Ni (wt.%) | C (wt.%) | Co (wt.%) | Cu (wt.%) | Cr (wt.%) | Nb (wt.%) | Fe (wt.%) | O (m/m) | N (m/m) | H (m/m) | Ti |
55.8 | 0.0074 | <0.003 | <0.003 | <0.003 | <0.003 | 0.004 | 0.034 | 0.0015 | 0.007 | Remain |
Temperature (°C) | 450 | 470 | 490 | 510 |
---|---|---|---|---|
Time (min) | 5 | 5 | 5 | 5 |
10 | 10 | 10 | 10 | |
15 | 15 | 15 | 15 | |
20 | 20 | 20 | 20 |
(°C) | (°C) | (°C) | (°C) | |
---|---|---|---|---|
None | 12.04 | 18.93 | 55.12 | 64.34 |
450 °C/5 min | 6.5 | 12.86 | 47.64 | 54.86 |
450 °C/10 min | 1.05 | 8.27 | 43.7 | 50.92 |
450 °C/15 min | −3.54 | 4.66 | 41.73 | 47.93 |
450 °C/20 min | −4.86 | 0.98 | 39.76 | 45 |
470 °C/5 min | 3.44 | 11.09 | 44.52 | 52.4 |
470 °C/10 min | −7.55 | 1.41 | 33 | 42.6 |
470 °C/15 min | −12 | −4.23 | 26.51 | 33.66 |
470 °C/20 min | −17.29 | −10.24 | 21.62 | 27.53 |
490 °C/5 min | −6.4 | 2.26 | 39.76 | 46.46 |
490 °C/10 min | −18.57 | −10.86 | 27.17 | 33.37 |
490 °C/15 min | −28.71 | −18.24 | 17.72 | 25.75 |
490 °C/20 min | −32.32 | −25 | 14.63 | 20.28 |
510 °C/5 min | −13.15 | −2.72 | 35.24 | 43.04 |
510 °C/10 min | −23.36 | −13.65 | 23.72 | 32 |
510 °C/15 min | −35.66 | −27.62 | 10.47 | 23.46 |
510 °C/20 min | − | − | −3.94 | 11.65 |
Name | Horizontal Cosine Beam | Vertical Cosine Beam |
---|---|---|
S1 | None | None |
S2 | 450 °C, 5 min | 450 °C, 5 min |
S3 | 470 °C, 5 min | 450 °C, 5 min |
S4 | 470 °C, 5 min | 490 °C, 5 min |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Qiao, J.; Li, X.; Wang, S.; Li, B.; Wu, S.; Wang, Z.; Ji, J. NiTi Alloy Quasi-Zero Stiffness Vibration Isolation Structure with Adjustable Mechanical Properties. Machines 2025, 13, 92. https://doi.org/10.3390/machines13020092
Wu Q, Qiao J, Li X, Wang S, Li B, Wu S, Wang Z, Ji J. NiTi Alloy Quasi-Zero Stiffness Vibration Isolation Structure with Adjustable Mechanical Properties. Machines. 2025; 13(2):92. https://doi.org/10.3390/machines13020092
Chicago/Turabian StyleWu, Qian, Jianxiang Qiao, Xinping Li, Shengsheng Wang, Bingqian Li, Siyang Wu, Zhenguo Wang, and Jiangtao Ji. 2025. "NiTi Alloy Quasi-Zero Stiffness Vibration Isolation Structure with Adjustable Mechanical Properties" Machines 13, no. 2: 92. https://doi.org/10.3390/machines13020092
APA StyleWu, Q., Qiao, J., Li, X., Wang, S., Li, B., Wu, S., Wang, Z., & Ji, J. (2025). NiTi Alloy Quasi-Zero Stiffness Vibration Isolation Structure with Adjustable Mechanical Properties. Machines, 13(2), 92. https://doi.org/10.3390/machines13020092