Animal Models of Post-Traumatic Epilepsy
Abstract
:1. Introduction
2. Animal Models of Post-Traumatic Epilepsy
2.1. Fluid Percussion Injury
2.1.1. Protocols for Developing Fluid Percussion Model
Protocol for Fluid Percussion Model in Mice
Protocol for Fluid Percussion Model in Rats
2.1.2. Evidence of Seizure Susceptibility Following Fluid Percussion Model
2.1.3. The Validity of Fluid Percussion Model
2.2. Controlled Cortical Impact Injury
2.2.1. Protocols for Developing Controlled Cortical Impact (CCI) Model
Protocol for Controlled Cortical Impact (CCI) Model in Mouse
Protocol for Controlled Cortical Impact (CCI) Model in Rats
Protocol for Controlled Cortical Impact (CCI) Model in Ferrets
2.2.2. Evidence of Seizure Susceptibility Following Controlled Cortical Impact (CCI) Model
2.2.3. The Validity of the Controlled Cortical Impact (CCI) Model
2.3. Impact-Acceleration Model
2.3.1. Protocols for Developing Impact-Acceleration Model
2.3.2. Evidence for Seizure Susceptibility in Impact Acceleration Model of Post-Traumatic Epilepsy
2.3.3. The Validity of Impact-Acceleration Model of Post-Traumatic Epilepsy
2.4. Canine Model of Post-Traumatic Epilepsy
2.4.1. Evidence for Seizure Susceptibility in Canine Model of Post-Traumatic Epilepsy
2.4.2. The Validity of the Canine Model of Post-Traumatic Epilepsy
2.5. Model of Post-Traumatic Epilepsy after Penetrating Brain Injuries
2.5.1. Protocols for Developing Penetrating Brain Injury Model of Post-Traumatic Epilepsy
2.5.2. Evidence for Seizure Susceptibility in Penetrating Brain Injury Model of Post-Traumatic Epilepsy
2.6. Pediatric Post-Traumatic Epilepsy
2.6.1. Protocols for Developing Pediatric Post-Traumatic Epilepsy Models
2.6.2. Evidence of Seizure Susceptibility Following Pediatric Post-Traumatic Epilepsy Model
2.6.3. The Validity of Pediatric Post-Traumatic Epilepsy Model
3. Conclusions
Funding
Conflicts of Interest
Abbreviations
TBI | Traumatic Brain Injury |
FPI | Fluid Percussion Injury |
CCI | Controlled Cortical Impact |
THE | Tonic Hindlimb Extension |
PND | Post-Natal Day |
PTZ | Pentylenetetrazol |
PTE | Post-Traumatic Epilepsy |
References
- Dewan, M.C.; Rattani, A.; Gupta, S.; Baticulon, R.E.; Hung, Y.-C.; Punchak, M.; Agrawal, A.; Adeleye, A.O.; Shrime, M.G.; Rubiano, A.M.; et al. Estimating the global incidence of traumatic brain injury. J. Neurosurg. 2019, 130, 1080–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agrawal, A.; Timothy, J.; Pandit, L.; Manju, M. Post-traumatic epilepsy: An overview. Clin. Neurol. Neurosurg. 2006, 108, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Gupta, P.K.; Diaz-Arrastia, R. Epilepsy after Traumatic Brain Injury. In Translational Research in Traumatic Brain Injury; Laskowitz, D., Grant, G., Eds.; Frontiers in Neuroscience; CRC Press/Taylor and Francis Group: Boca Raton, FL, USA, 2016; ISBN 978-1-4665-8491-4. [Google Scholar]
- Annegers, J.F.; Hauser, W.A.; Coan, S.P.; Rocca, W.A. A Population-Based Study of Seizures after Traumatic Brain Injuries. N. Engl. J. Med. 1998, 338, 20–24. [Google Scholar] [CrossRef]
- Xu, T.; Yu, X.; Ou, S.; Liu, X.; Yuan, J.; Huang, H.; Yang, J.; He, L.; Chen, Y. Risk factors for posttraumatic epilepsy: A systematic review and meta-analysis. Epilepsy Behav. 2017, 67, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.-J.; Harnod, T.; Lin, C.-L.; Kao, C.-H. Mortality Risk and Risk Factors in Patients with Posttraumatic Epilepsy: A Population-Based Cohort Study. Int. J. Environ. Res. Public. Health 2019, 16, 589. [Google Scholar] [CrossRef] [Green Version]
- Temkin, N.R. Risk Factors for Posttraumatic Seizures in Adults: Risk factors for posttraumatic seizures. Epilepsia 2003, 44, 18–20. [Google Scholar] [CrossRef]
- Annegers, J.F.; Rocca, W.A.; Hauser, W.A. Causes of Epilepsy: Contributions of the Rochester Epidemiology Project. Mayo Clin. Proc. 1996, 71, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Piccenna, L.; Shears, G.; O’Brien, T.J. Management of post-traumatic epilepsy: An evidence review over the last 5 years and future directions. Epilepsia Open 2017, 2, 123–144. [Google Scholar] [CrossRef]
- Zimmermann, L.L.; Martin, R.M.; Girgis, F. Treatment options for posttraumatic epilepsy. Curr. Opin. Neurol. 2017, 30, 580–586. [Google Scholar] [CrossRef]
- Temkin, N.R.; Jarell, A.D.; Anderson, G.D. Antiepileptogenic Agents: How Close Are We? Drugs 2001, 61, 1045–1055. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Schmidt, D. New horizons in the development of antiepileptic drugs. Epilepsy Res. 2002, 50, 3–16. [Google Scholar] [CrossRef]
- Temkin, N.R.; Haglund, M.M.; Winn, H.R. Causes, prevention, and treatment of post-traumatic epilepsy. New Horiz. Balt. Md 1995, 3, 518–522. [Google Scholar]
- Mukherjee, S.; Zeitouni, S.; Cavarsan, C.F.; Shapiro, L.A. Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front. Neurol. 2013, 4, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Ambrosio, R. Post-traumatic epilepsy following fluid percussion injury in the rat. Brain 2004, 127, 304–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolkvadze, T.; Pitkänen, A. Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J. Neurotrauma 2012, 29, 789–812. [Google Scholar] [CrossRef]
- Xiong, Y.; Mahmood, A.; Chopp, M. Animal models of traumatic brain injury. Nat. Rev. Neurosci. 2013, 14, 128–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alder, J.; Fujioka, W.; Lifshitz, J.; Crockett, D.P.; Thakker-Varia, S. Lateral fluid percussion: Model of traumatic brain injury in mice. J. Vis. Exp. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McIntosh, T.K.; Vink, R.; Noble, L.; Yamakami, I.; Fernyak, S.; Soares, H.; Faden, A.L. Traumatic brain injury in the rat: Characterization of a lateral fluid-percussion model. Neuroscience 1989, 28, 233–244. [Google Scholar] [CrossRef]
- Frey, L.C.; Hellier, J.; Unkart, C.; Lepkin, A.; Howard, A.; Hasebroock, K.; Serkova, N.; Liang, L.; Patel, M.; Soltesz, I.; et al. A novel apparatus for lateral fluid percussion injury in the rat. J. Neurosci. Methods 2009, 177, 267–272. [Google Scholar] [CrossRef] [Green Version]
- Dixon, C.E.; Lighthall, J.W.; Anderson, T.E. Physiologic, Histopathologic, and Cineradiographic Characterization of a New Fluid–Percussion Model of Experimental Brain Injury in the Rat. J. Neurotrauma 1988, 5, 91–104. [Google Scholar] [CrossRef]
- Thompson, H.J.; Lifshitz, J.; Marklund, N.; Grady, M.S.; Graham, D.I.; Hovda, D.A.; McIntosh, T.K. Lateral fluid percussion brain injury: A 15-year review and evaluation. J. Neurotrauma 2005, 22, 42–75. [Google Scholar] [CrossRef] [PubMed]
- Golarai, G.; Greenwood, A.C.; Feeney, D.M.; Connor, J.A. Physiological and structural evidence for hippocampal involvement in persistent seizure susceptibility after traumatic brain injury. J. Neurosci. Off. J. Soc. Neurosci. 2001, 21, 8523–8537. [Google Scholar] [CrossRef]
- Shultz, S.R.; Cardamone, L.; Liu, Y.R.; Hogan, R.E.; Maccotta, L.; Wright, D.K.; Zheng, P.; Koe, A.; Gregoire, M.-C.; Williams, J.P.; et al. Can structural or functional changes following traumatic brain injury in the rat predict epileptic outcome? Epilepsia 2013, 54, 1240–1250. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lyeth, B.G. Historical Review of the Fluid-Percussion TBI Model. Front. Neurol. 2016, 7, 217. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.E.; Smith, D.H.; Trojanowski, J.Q.; McIntosh, T.K. Enduring cognitive, neurobehavioral and histopathological changes persist for up to one year following severe experimental brain injury in rats. Neuroscience 1998, 87, 359–369. [Google Scholar] [CrossRef]
- Lifshitz, J.; Rowe, R.K.; Griffiths, D.R.; Evilsizor, M.N.; Thomas, T.C.; Adelson, P.D.; McIntosh, T.K. Clinical relevance of midline fluid percussion brain injury: Acute deficits, chronic morbidities and the utility of biomarkers. Brain Inj. 2016, 30, 1293–1301. [Google Scholar] [CrossRef] [Green Version]
- Edward Dixon, C.; Clifton, G.L.; Lighthall, J.W.; Yaghmai, A.A.; Hayes, R.L. A controlled cortical impact model of traumatic brain injury in the rat. J. Neurosci. Methods 1991, 39, 253–262. [Google Scholar] [CrossRef]
- Osier, N.D.; Dixon, C.E. The Controlled Cortical Impact Model: Applications, Considerations for Researchers, and Future Directions. Front. Neurol. 2016, 7, 134. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.; Afroz, S.; Michelson, H.B.; Goodman, J.H.; Valsamis, H.A.; Ling, D.S.F. Spontaneous Epileptiform Activity in Rat Neocortex after Controlled Cortical Impact Injury. J. Neurotrauma 2010, 27, 1541–1548. [Google Scholar] [CrossRef]
- Hunt, R.F.; Haselhorst, L.A.; Schoch, K.M.; Bach, E.C.; Rios-Pilier, J.; Scheff, S.W.; Saatman, K.E.; Smith, B.N. Posttraumatic mossy fiber sprouting is related to the degree of cortical damage in three mouse strains. Epilepsy Res. 2012, 99, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Lighthall, J.W. Controlled Cortical Impact: A New Experimental Brain Injury Model. J. Neurotrauma 1988, 5, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Hunt, R.F.; Scheff, S.W.; Smith, B.N. Posttraumatic epilepsy after controlled cortical impact injury in mice. Exp. Neurol. 2009, 215, 243–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hall, E.D.; Bryant, Y.D.; Cho, W.; Sullivan, P.G. Evolution of Post-Traumatic Neurodegeneration after Controlled Cortical Impact Traumatic Brain Injury in Mice and Rats as Assessed by the De Olmos Silver and Fluorojade Staining Methods. J. Neurotrauma 2008, 25, 235–247. [Google Scholar] [CrossRef] [PubMed]
- Hall, E.D.; Sullivan, P.G.; Gibson, T.R.; Pavel, K.M.; Thompson, B.M.; Scheff, S.W. Spatial and temporal characteristics of neurodegeneration after controlled cortical impact in mice: More than a focal brain injury. J. Neurotrauma 2005, 22, 252–265. [Google Scholar] [CrossRef]
- Ostergard, T.; Sweet, J.; Kusyk, D.; Herring, E.; Miller, J. Animal models of post-traumatic epilepsy. J. Neurosci. Methods 2016, 272, 50–55. [Google Scholar] [CrossRef]
- Marmarou, A.; Foda, M.A.A.-E.; van den Brink, W.; Campbell, J.; Kita, H.; Demetriadou, K. A new model of diffuse brain injury in rats. J. Neurosurg. 1994, 80, 291–300. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, T.-H.; Kang, J.-W.; Lai, J.-H.; Huang, Y.-Z.; Rotenberg, A.; Chen, K.-Y.; Wang, J.-Y.; Chan, S.-Y.; Chen, S.-C.; Chiang, Y.-H.; et al. Relationship of mechanical impact magnitude to neurologic dysfunction severity in a rat traumatic brain injury model. PLoS ONE 2017, 12, e0178186. [Google Scholar]
- Yan, E.B.; Johnstone, V.P.A.; Alwis, D.S.; Morganti-Kossmann, M.-C.; Rajan, R. Characterising effects of impact velocity on brain and behaviour in a model of diffuse traumatic axonal injury. Neuroscience 2013, 248, 17–29. [Google Scholar] [CrossRef]
- Cernak, I.; Vink, R.; Zapple, D.N.; Cruz, M.I.; Ahmed, F.; Chang, T.; Fricke, S.T.; Faden, A.I. The pathobiology of moderate diffuse traumatic brain injury as identified using a new experimental model of injury in rats. Neurobiol. Dis. 2004, 17, 29–43. [Google Scholar] [CrossRef]
- Vink, R. Large animal models of traumatic brain injury. J. Neurosci. Res. 2018, 96, 527–535. [Google Scholar] [CrossRef] [Green Version]
- Steinmetz, S.; Tipold, A.; Löscher, W. Epilepsy after head injury in dogs: A natural model of posttraumatic epilepsy. Epilepsia 2013, 54, 580–588. [Google Scholar] [CrossRef] [PubMed]
- Vakil, M.T.; Singh, A.K. A review of penetrating brain trauma: Epidemiology, pathophysiology, imaging assessment, complications, and treatment. Emerg. Radiol. 2017, 24, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Kendirli, M.T.; Rose, D.T.; Bertram, E.H. A model of posttraumatic epilepsy after penetrating brain injuries: Effect of lesion size and metal fragments. Epilepsia 2014, 55, 1969–1977. [Google Scholar] [CrossRef] [PubMed]
- Statler, K.D.; Swank, S.; Abildskov, T.; Bigler, E.D.; White, H.S. Traumatic brain injury during development reduces minimal clonic seizure thresholds at maturity. Epilepsy Res. 2008, 80, 163–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keret, A.; Bennett-Back, O.; Rosenthal, G.; Gilboa, T.; Shweiki, M.; Shoshan, Y.; Benifla, M. Posttraumatic epilepsy: Long-term follow-up of children with mild traumatic brain injury. J. Neurosurg. Pediatr. 2017, 20, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, S.Y.; Ong, J.W.; Ng, Z.M.; Foo, C.Y.; Chua, S.Z.; Sri, D.; Lee, J.H.; Chong, S.-L. Long-term outcomes in children with moderate to severe traumatic brain injury: A single-centre retrospective study. Brain Inj. 2019, 33, 1420–1424. [Google Scholar] [CrossRef]
- Young, B.; Rapp, R.P.; Norton, J.A.; Haack, D.; Walsh, J.W. Failure of Prophylactically Administered Phenytoin to Prevent Post-Traumatic Seizures in Children. Pediatr. Neurosurg. 1983, 10, 185–192. [Google Scholar] [CrossRef]
- Olson, S. Review of the role of anticonvulsant prophylaxis following brain injury. J. Clin. Neurosci. 2004, 11, 1–3. [Google Scholar] [CrossRef]
- Kochanek, P.M.; Wallisch, J.S.; Bayır, H.; Clark, R.S.B. Pre-clinical models in pediatric traumatic brain injury-challenges and lessons learned. Childs Nerv. Syst. ChNS Off. J. Int. Soc. Pediatr. Neurosurg. 2017, 33, 1693–1701. [Google Scholar] [CrossRef]
- Statler, K.D.; Scheerlinck, P.; Pouliot, W.; Hamilton, M.; White, H.S.; Dudek, F.E. A potential model of pediatric posttraumatic epilepsy. Epilepsy Res. 2009, 86, 221–223. [Google Scholar] [CrossRef] [Green Version]
Animal Model | Advantages | Disadvantages |
---|---|---|
Fluid Percussion Injury (FPI) |
|
|
Controlled Cortical Impact |
|
|
Impact Acceleration Model |
|
|
Canine Model of Post-Traumatic Epilepsy |
|
|
Penetrating Head Trauma Model |
|
|
Pediatric Post-Traumatic Epilepsy |
|
|
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keith, K.A.; Huang, J.H. Animal Models of Post-Traumatic Epilepsy. Diagnostics 2020, 10, 4. https://doi.org/10.3390/diagnostics10010004
Keith KA, Huang JH. Animal Models of Post-Traumatic Epilepsy. Diagnostics. 2020; 10(1):4. https://doi.org/10.3390/diagnostics10010004
Chicago/Turabian StyleKeith, Kristin A., and Jason H. Huang. 2020. "Animal Models of Post-Traumatic Epilepsy" Diagnostics 10, no. 1: 4. https://doi.org/10.3390/diagnostics10010004
APA StyleKeith, K. A., & Huang, J. H. (2020). Animal Models of Post-Traumatic Epilepsy. Diagnostics, 10(1), 4. https://doi.org/10.3390/diagnostics10010004