Scattering of Light from the Systemic Circulatory System
Abstract
:1. Introduction
2. Fundamental Optical Properties of Tissues
2.1. Absorption Coefficient
2.2. Scattering Coefficient
2.3. Reduced Scattering Coefficient
3. Scattering of Light from Nerves, Veins, and Arteries
3.1. Haemoglobin Absorption
3.2. Optical Properties of Human Blood and Its Composition
4. Computational Techniques in Literature
5. Theoretical and Experimental Techniques in the Literature
5.1. Fundamentals of Polarized Light Scattering
5.2. Polarimetric Imaging
5.3. Stokes Parameter
5.4. Mueller Matrix
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tang, J.; Fu, C. Preliminary experimental research on skin reflection, transmission and absorption of light rays. Chin. J. Lasers 1987, 7, 1–14. [Google Scholar]
- Lister, T.; Wright, P.A.; Chappell, P.H. Optical properties of human skin. J. Biomed. Opt. 2012, 17, 090901. [Google Scholar] [CrossRef] [PubMed]
- Cuccia, D.J.; Bevilacqua, F.P.; Durkin, A.J.; Ayers, F.R.; Tromberg, B.J. Quantitation and mapping of tissue optical properties using modulated imaging. J. Biomed. Opt. 2009, 14, 024012. [Google Scholar] [CrossRef] [PubMed]
- Beck, G.C.; Akgun, N.; Ruck, A.; Steiner, R. Design and characterisation of a tissue phantom system for optical diagnostics. Lasers Med. Sci. 1998, 17, 160–171. [Google Scholar] [CrossRef]
- Tuchin, V.V.; Maksimova, I.L.; Zimnyakov, D.A.; Kon, I.L.; Mavlyutov, A.H.; Mishin, A.A. Light propagation in tissues with controlled optical properties. J. Biomed. Opt. 1997, 2, 401–418. [Google Scholar] [CrossRef]
- Kim, M.K. Principles and techniques of digital holographic microscopy. SPIE Rev. 2010, 1, 018005. [Google Scholar] [CrossRef] [Green Version]
- Yodh, A.; Chance, B. Spectroscopy and imaging with diffusing light. Phys. Today 1995, 3, 34–41. [Google Scholar] [CrossRef]
- Hardy, J.D.; Hammel, H.T.; Murgatroyd, D. Spectral transmittance and reflectance of excised human skin. J. Appl. Physiol. 1956, 2, 257–264. [Google Scholar] [CrossRef]
- Papadopoulos, M.G.; Sadlej, A.J.; Leszczynski, J. Non-Linear Optical Properties of Matter; Springer: Dordrecht, The Netherlands, 2006. [Google Scholar]
- Asahara, A.; Nishiyama, A.; Yoshida, S.; Kondo, K.I.; Nakajima, Y.; Minoshima, K. Dual-comb spectroscopy for rapid characterization of complex optical properties of solids. Opt. Lett. 2016, 41, 4971–4974. [Google Scholar] [CrossRef]
- Lin, S.P.; Wang, L.; Jacques, S.L.; Tittel, F.K. Measurement of tissue optical properties by the use of oblique-incidence optical fiber reflectometry. Appl. Opt. 1997, 1, 136–143. [Google Scholar] [CrossRef] [Green Version]
- Wilson, B.C.; Patterson, M.S.; Flock, S.T. Indirect versus direct techniques for the measurement of the optical properties of tissues. Photochem. Photobiol. 1987, 46, 601–608. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.M.; Knuttel, A.; Bonner, R.F. Measurement of optical properties of biological tissues by low-coherence reflectometry. Appl. Opt. 1993, 32, 6032–6042. [Google Scholar] [CrossRef] [PubMed]
- Batool, S.; Nisar, M.; Mangini, F.; Frezza, F.; Fazio, E. Polarization Imaging for Identifying the Microscopical Orientation of Biological Structures. In Proceedings of the URSI GASS Conference, Rome, Italy, 29 August 2020. [Google Scholar]
- Frezza, F.; Mangini, F.; Muzi, M.; Stoja, E. In silico validation procedure for cell volume fraction estimation through dielectric spectroscopy. J. Biol. Phys. 2015, 41, 223–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frezza, F.; Mangini, F.; Tedeschi, N. Introduction to electromagnetic scattering: Tutorial. JOSA A 2018, 35, 163–173. [Google Scholar] [CrossRef]
- Frezza, F.; Mangini, F.; Tedeschi, N. Introduction to electromagnetic scattering, part II. tutorial. JOSA A 2020, 37, 1300–1315. [Google Scholar] [CrossRef]
- Batool, S.; Frezza, F.; Mangini, F.; Xu, Y.L. Scattering from multiple PEC sphere using Translation Addition Theorems for Spherical Vector Wave Function. J. Quant. Spectrosc. Radiat. Transf. 2020, 248, 106905. [Google Scholar] [CrossRef]
- Batool, S.; Naqvi, Q.A.; Fiaz, M.A. Scattering from a cylindrical obstacle deeply buried beneath a planar non-integer dimensional dielectric slab using Kobayashi potential method. Opt. Int. J. Light Electron Opt. 2018, 153, 95–108. [Google Scholar] [CrossRef]
- Prieve, D.C.; Walz, J.Y. Scattering of an evanescent surface wave by a microscopic dielectric sphere. Appl. Opt. 1993, 32, 1629–1641. [Google Scholar] [CrossRef]
- Frezza, F.; Mangini, F. Vectorial spherical-harmonics representation of an inhomogeneous elliptically polarized plane wave. JOSA A 2015, 32, 1379–1383. [Google Scholar] [CrossRef]
- Batool, S.; Benedetti, A.; Frezza, F.; Mangini, F.; Xu, Y.L. Effect of Finite Terms on the Truncation Error of Addition Theorems for Spherical Vector Wave Function, PhotonIcs. In Proceedings of the IEEE Electromagnetics Research Symposium-Spring (PIERS Spring), Rome, Italy, 17–20 June 2019; pp. 2795–2801. [Google Scholar]
- Bassan, P.; Kohler, A.; Martens, H.; Lee, J.; Byrne, H.J.; Dumas, P.; Gazi, E.; Brown, M.; Clarke, N.; Gardner, P. Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 2010, 135, 268–277. [Google Scholar] [CrossRef]
- Graaff, R.; Aarnoudse, J.G.; Zijp, J.R.; Sloot, P.M.; De Mul, F.F.; Greve, J.; Koelink, M.H. Reduced light-scattering properties for mixtures of spherical particles: A simple approximation derived from Mie calculations. Appl. Opt. 1992, 31, 1370–1376. [Google Scholar] [CrossRef] [Green Version]
- Yi, J.; Backman, V. Imaging a full set of optical scattering properties of biological tissues by inverse spectroscopic optical coherence tomography. Opt. Lett. 2012, 37, 4443–4445. [Google Scholar] [CrossRef] [Green Version]
- Fung, A.K. A note on the Wiener-Khintchine theorem for autocorrelation. Proc. IEEE 1967, 55, 594–595. [Google Scholar] [CrossRef]
- Jacques, S.L. Optical properties of biological tissues: A review. Phys. Med. Biol. 2013, 11, 37–61. [Google Scholar] [CrossRef]
- Jacques, S.L.; Prahl, S.A. ECE532 Biomedical Optics; Oregon Graduate Institute: Washington, DC, USA, 1998. [Google Scholar]
- Gazdaru, D.; Chilom, C.; Calin, M.A.; Geanta, C.; Popescu, A. Laser radiation propagation and heat transfer into cells and tissues. Rom. J. Biophys. 2008, 18, 73–85. [Google Scholar]
- Schmidt, F.E. Development of a Time-Resolved Optical Tomography System for Neonatal Brain Imaging. Ph.D. Thesis, University of London, London, UK, 2000. [Google Scholar]
- Grossweiner, L.I.; Grossweiner, J.B.; Rogers, B.G. The Science of Phototherapy: An Introduction; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar]
- Johns, M.; Giller, C.A.; German, D.C.; Liu, H. Determination of reduced scattering coefficient of biological tissue from a needle-like probe. Opt. Express 2005, 13, 4828–4842. [Google Scholar] [CrossRef]
- Yariv, I.; Duadi, H.; Fixler, D. Optical method to extract the reduced scattering coefficient from tissue: Theory and experiments. Opt. Lett. 2018, 43, 5299–5302. [Google Scholar] [CrossRef]
- Mourant, J.R.; Fuselier, T.; Boyer, J.; Johnson, T.M.; Bigio, I.J. Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms. Appl. Opt. 1997, 36, 949–957. [Google Scholar] [CrossRef]
- Jacques, S.L. Origins of tissue optical properties in the UVA, visible, and NIR regions. OSA TOPS Adv. Opt. Imaging Photon Migr. 1996, 1, 364–371. [Google Scholar]
- Anderson, R.R.; Parrish, J.A. Optical Properties of Human Skin; Springer: Berlin/Heidelberg, Germany, 1982; pp. 147–194. [Google Scholar]
- Simpson, C.R.; Kohl, M.; Essenpreis, M.; Cope, M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys. Med. Biol. 1998, 43, 2465. [Google Scholar] [CrossRef]
- Saidi, I.S.; Jacques, S.L.; Tittel, F.K. Mie and Rayleigh modeling of visible-light scattering in neonatal skin. Appl. Opt. 1995, 34, 7410–7418. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Tuchin, V.V. Optical properties of skin, subcutaneous, and muscle tissues: A review. J. Innov. Opt. Health Sci. 2011, 4, 9–38. [Google Scholar] [CrossRef]
- Salomatina, E.V.; Jiang, B.; Novak, J.; Yaroslavsky, A.N. Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 2006, 11, 064026. [Google Scholar] [CrossRef]
- Sandell, J.L.; Zhu, T.C. A review of in vivo optical properties of human tissues and its impact on PDT. J. Biophotonics 2011, 4, 773–787. [Google Scholar] [CrossRef] [Green Version]
- Bevilacqua, F.; Berger, A.J.; Cerussi, A.E.; Jakubowski, D.; Tromberg, B.J. Broadband absorption spectroscopy in turbid media by combined frequency-domain and steady-state methods. Appl. Opt. 2000, 39, 6498–6507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spinelli, L.; Torricelli, A.; Pifferi, A.; Taroni, P.; Danesini, G.M.; Cubeddu, R. Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography. J. Biomed. Opt. 2004, 9, 1137–1143. [Google Scholar] [CrossRef]
- Cerussi, A.E.; Berger, A.J.; Bevilacqua, F.; Shah, N.; Jakubowski, D.; Butler, J.; Holcombe, R.F.; Tromberg, B.J. Sources of absorption and scattering contrast for near-infrared optical mammography. Acad. Radiol. 2001, 8, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Durduran, T.; Choe, R.; Culver, J.P.; Zubkov, L.; Holboke, M.J.; Giammarco, J.; Chance, B.; Yodh, A.G. Bulk optical properties of healthy female breast tissue. Phys. Med. Biol. 2002, 47, 2847. [Google Scholar] [CrossRef] [Green Version]
- Firbank, H.; Hiraoka, M.; Essenpreis, M.; Delpy, D.T. Measurement of the optical properties of the skull in the wavelength range 650–950 nm. Phys. Med. Biol. 1993, 38, 503–510. [Google Scholar] [CrossRef]
- Newman, C.; Jacques, S.L. Laser penetration into prostate for various wavelengths. Lasers Surg. Med. 1991, 3, 75. [Google Scholar]
- Peters, V.G.; Wyman, D.R.; Patterson, M.S.; Frank, G.L. Optical properties of normal and diseased human breast tissues in the visible and near infrared. Phys. Med. Biol. 1990, 35, 1317. [Google Scholar] [CrossRef] [PubMed]
- Alexandrakis, G.; Rannou, F.R.; Chatziioannou, A.F. Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: A computer simulation feasibility study. Phys. Med. Biol. 2005, 50, 4225. [Google Scholar] [CrossRef] [PubMed]
- Brinchmann, H.O.; Heier, H. Theoretical relations between light streak characteristics and optical properties of retinal vessels. Acta Ophthalmol. 1986, 64, 33–37. [Google Scholar] [CrossRef]
- Fitzgerald, A.J.; Berry, E.; Zinovev, N.N.; Homer, V.S.; Miles, R.E.; Chamberlain, J.M.; Smith, M.A. Catalogue of human tissue optical properties at terahertz frequencies. J. Biol. Phys. 2003, 29, 123–128. [Google Scholar] [CrossRef] [Green Version]
- Gerken, M.; Faris, G.W. Frequency-domain immersion technique for accurate optical property measurements of turbid media. Opt. Lett. 1999, 24, 1726–1728. [Google Scholar]
- Ko, A.C.; Ridsdale, A.; Mostaco, G.L.B.; Major, A.; Stolow, A.; Sowa, M.G. Nonlinear optical microscopy in decoding arterial diseases. Biophys. Rev. 2012, 4, 323–334. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.J.; Humphrey, J.D.; Yeh, A.T. Characterization of engineered tissue development under biaxial stretch using nonlinear optical microscopy. Tissue Eng. Part A 2009, 15, 1553–1564. [Google Scholar] [CrossRef]
- Bashkatov, A.N.; Genina, E.A.; Kochubey, V.I.; Tuchin, V.V. Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 2005, 15, 2543–2554. [Google Scholar] [CrossRef]
- Troy, T.L.; Thennadil, S.N. Optical properties of human skin in the near infrared wavelength range of 1000 to 2200 nm. J. Biomed. Opt. 2001, 2, 167–177. [Google Scholar] [CrossRef]
- Gareau, D.S.; Gratzer, W.B.; Kollias, N. Personal Communication from Gratzer; Med. Res. Council Labs: Holly Hill, SC, USA; London, UK; N Kollias, Wellman Laboratories, Harvard Medical School: Boston, MA, USA; Available online: http://omlc.ogi.edu/spectra/hemoglobin/ (accessed on 10 October 2020).
- Roggan, A.; Friebel, M.; Dorschel, K.; Hahn, A.; Mueller, G.J. Optical properties of circulating human blood in the wavelength range 400–2500 nm. J. Biomed. Opt. 1999, 4, 36–47. [Google Scholar] [CrossRef] [Green Version]
- Kienle, A.; Lilge, L.; Vitkin, I.A.; Patterson, M.S.; Wilson, B.C.; Hibst, R.; Steiner, R. Why do veins appear blue? A new look at an old question. Appl. Opt. 1996, 35, 1151–1160. [Google Scholar] [CrossRef] [Green Version]
- Bosschaart, N.; Edelman, G.J.; Aalders, M.C.; Van Leeuwen, T.G.; Faber, D.J. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med. Sci. 2014, 29, 453–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hammer, M.; Roggan, A.; Schweitzer, D.; Muller, G. Optical properties of ocular fundus tissues-an in vitro study using the double-integrating-sphere technique and inverse Monte Carlo simulation. Phys. Med. Biol. 1995, 40, 963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kondermann, C.; Kondermann, D.; Yan, M. Blood vessel classification into arteries and veins in retinal images. Int. Soc. Opt. Eng. 2007, 12, 651247. [Google Scholar]
- Alam, M.; Son, T.; Toslak, D.; Lim, J.I.; Yao, X. Combining ODR and Blood Vessel Tracking for Artery/Vein Classification and Analysis in Color Fundus Images. Transl. Vis. Sci. Technol. 2018, 2, 1–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mangini, F.; Dinuzzo, M.; Maugeri, L.; Moraschi, M.; Mascali, D.; Cedola, A.; Frezza, F.; Giove, F.; Fratini, M. Numerical simulation of the blood oxygenation level-dependent functional magnetic resonance signal using finite element method. Int. J. Numer. Methods Biomed. Eng. 2020, 36, 3290. [Google Scholar] [CrossRef]
- Shvalov, A.N.; Soini, J.T.; Chernyshev, A.V.; Tarasov, P.A.; Soini, E.; Maltsev, V.P. Light-scattering properties of individual erythrocytes. Appl. Opt. 1998, 38, 230–235. [Google Scholar] [CrossRef]
- Borovoi, A.G.; Naats, E.I.; Oppel, U.G. Scattering of light by a red blood cell. J. Biomed. Opt. 1998, 3, 364–372. [Google Scholar] [CrossRef]
- Kinnunen, M.; Kauppila, A.; Karmenyan, A.; Myllyla, R. Effect of the size and shape of a red blood cell on elastic light scattering properties at the single-cell level. Biomed. Opt. Express 2011, 2, 1803–1814. [Google Scholar] [CrossRef] [Green Version]
- Mazeron, P.; Muller, S.; El Azouzi, H. Deformation of erythrocytes under shear: A small-angle light scattering study. Biorheology 1997, 34, 99–110. [Google Scholar] [CrossRef]
- Liu, S.; Deng, Z.; Li, J.; Wang, J.; Huang, N.; Cui, R.; Zhang, Q.; Zhou, W.M.; Zhang, C.; Ye, Q.; et al. Measurement of the refractive index of whole blood and its components for a continuous spectral region. J. Biomed. Opt. 2019, 24, 035003. [Google Scholar] [CrossRef]
- Tycko, D.H.; Metz, M.H.; Epstein, E.A.; Grinbaum, A. Flow-cytometric light scattering measurement of red blood cell volume and hemoglobin concentration. Appl. Opt. 1985, 9, 1355–1365. [Google Scholar] [CrossRef]
- Yurkin, M.A.; Semyanov, K.A.; Tarasov, P.A.; Chernyshev, A.V.; Hoekstra, A.G.; Maltsev, V.P. Experimental and theoretical study of light scattering by individual mature red blood cells by use of scanning flow cytometry and a discrete dipole approximation. Appl. Opt. 2005, 25, 5249–5256. [Google Scholar] [CrossRef] [Green Version]
- Amer, J.; Goldfarb, A.; Fibach, E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur. J. Haematol. 2003, 2, 84–90. [Google Scholar] [CrossRef]
- Altendorf, E.; Zebert, D.; Holl, M.; Yager, P. Differential blood cell counts obtained using a microchannel based flow cytometer. Proc. Int. Solid State Sens. Actuators Conf. 1997, 1, 531–534. [Google Scholar]
- Sakota, D.; Takatani, S. Quantitative analysis of optical properties of flowing blood using a photon-cell interactive Monte Carlo code: Effects of red blood cells orientation on light scattering. J. Biomed. Opt. 2012, 5, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Friebel, M.; Roggan, A.; Muller, G.J.; Meinke, M.C. Determination of optical properties of human blood in the spectral range 250 to 1100 nm using Monte Carlo simulations with hematocrit-dependent effective scattering phase functions. J. Biomed. Opt. 2006, 3, 21–34. [Google Scholar] [CrossRef]
- Taflove, A. Computational Electrodynamics: The Finite Difference Time-Domain Method; Artech House: Norwood, MA, USA, 1995. [Google Scholar]
- Lu, J.Q.; Yang, P.; Hu, X.H. Simulations of light scattering from a biconcave red blood cell using the finite-difference time-domain method. J. Biomed. Opt. 2005, 10, 024022. [Google Scholar] [CrossRef] [Green Version]
- Brock, R.S.; Hu, X.H.; Yang, P.; Lu, J.Q. Evaluation of a parallel FDTD code and application to modeling of light scattering by deformed red blood cells. Opt. Express 2005, 14, 5279–5292. [Google Scholar] [CrossRef]
- Brock, R.S.; Hu, X.H.; Weidner, D.A.; Mourant, J.R.; Lu, J.Q. Effect of detailed cell structure on light scattering distribution: FDTD study of a B-cell with 3D structure constructed from confocal images. J. Quant. Spectrosc. Radiat. Transf. 2006, 1, 25–36. [Google Scholar] [CrossRef]
- He, J.; Karlsson, A.; Swartling, J.; Andersson-Engels, S. Light scattering by multiple red blood cells. JOSA A 2004, 10, 1953–1961. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlsson, A.; He, J.; Swartling, J.; Andersson-Engels, S. Numerical simulations of light scattering by red blood cells. IEEE Trans. Biomed. Eng. 2005, 1, 13–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wriedt, T.; Hellmers, J.; Eremina, E.; Schuh, R. Light scattering by single erythrocyte: Comparison of different methods. J. Quant. Spectrosc. Radiat. Transf. 2006, 1, 444–456. [Google Scholar] [CrossRef]
- Demos, S.G.; Alfano, R.R. Optical polarization imaging. Appl. Opt. 1997, 36, 150–155. [Google Scholar] [CrossRef] [PubMed]
- Demos, S.G.; Radousky, H.B.; Alfano, R.R. Deep subsurface imaging in tissues using spectral and polarization filtering. Opt. Express 2000, 7, 23–28. [Google Scholar] [CrossRef]
- Jacques, S.L.; Roman, J.R.; Lee, K. Imaging Superficial Tissues with Polarized Light; Wiley Interscience: New York, NY, USA, 1999. [Google Scholar]
- Sankaran, V.; Walsh, J.T.; Maitland, D.J. Polarized light propagation through tissue phantoms containing densely packed scatterers. Opt. Lett. 2000, 25, 239–241. [Google Scholar] [CrossRef]
- Firdous, S.; Ikram, M. Polarized Laser Beam Scattering through Turbid Medium for Application in Tissue Imaging. Sci. Asia 2005, 31, 167–172. [Google Scholar] [CrossRef]
- Anderson, R.R. Polarized light examination and photography of the skin. Arch. Dermatol. 1991, 127, 1000–1005. [Google Scholar] [CrossRef]
- Saarinen, K.; Muinonen, K. Light scattering by wood fibers. Appl. Opt. 2001, 40, 06477. [Google Scholar] [CrossRef]
- Mischenko, M.I.; Hovenier, J.W.; Travis, L.D. Light Scattering by Nonspherical Particles Theory Measurement and Applications; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering Absorption and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Giakos, G.C. Multispectral, multifusion laser polarimetric imaging principles. IEEE Int. Workshop Imaging Syst. Tech. 2004, 4, 54–59. [Google Scholar]
- Khos, O.T.; Munkhbaatar, P.; Yang, B.K.; Kim, H.W.; Kim, J.S.; Kim, M.W. Polarimetric measurement of Jones matrix of a twisted nematic liquid crystal spatial light modulator. J. Opt. Soc. Korea 2012, 16, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Jiao, S.; Wang, L.V. Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. J. Biomed. Opt. 2002, 7, 1083–3668. [Google Scholar] [CrossRef]
- Layden, D.; Ghosh, N.; Vitkin, A. Quantitative polarimetry for tissue characterization and diagnosis. Adv. Biophotonics Tissue Opt. Sect. 2013, 5, 73–108. [Google Scholar]
- Arteaga, O.; Freudenthal, J.; Wang, B.; Kahr, B. Mueller matrix polarimetry with four photoelastic modulators theory and calibration. Appl. Opt. 2012, 28, 6805–6817. [Google Scholar] [CrossRef]
- Pezzaniti, J.L.; Chipman, R.A. Mueller matrix imaging polarimetry. Opt. Eng. 1995, 34, 1558–1569. [Google Scholar] [CrossRef]
# | a | b | a | Tissue Description | Ref | ||
---|---|---|---|---|---|---|---|
Skin | |||||||
1 | 48.9 | 1.548 | 45.6 | 0.22 | 1.184 | skin | [36] |
2 | 47.8 | 2.453 | 42.9 | 0.76 | 0.351 | skin | [35] |
3 | 37.2 | 1.39 | 42.6 | 0.4 | 0.919 | skin | [37] |
4 | 60.1 | 1.722 | 58.3 | 0.31 | 0.919 | skin | [38] |
5 | 29.7 | 0.705 | 36.4 | 0.48 | 0.22 | skin | [39] |
6 | 45.3 | 1.292 | 43.6 | 0.41 | 0.562 | dermis | [40] |
7 | 68.7 | 1.161 | 66.7 | 0.29 | 0.689 | epidermis | [40] |
Brain | |||||||
8 | 40.8 | 3.059 | 40.8 | 0 | 3.088 | brain | [41] |
9 | 10.9 | 0.334 | 13.3 | 0.36 | 0 | cortex (frontal lobe) | [42] |
10 | 11.6 | 0.601 | 15.7 | 0.53 | 0 | cortex (temporal lobe) | [42] |
11 | 20 | 1.629 | 29.1 | 0.81 | 0 | astrocytoma of optic nerve | [42] |
12 | 25.9 | 1.156 | 25.9 | 0 | 1.156 | normal optic nerve | [42] |
13 | 21.5 | 1.629 | 31 | 0.82 | 0 | cerebellar white matter | [42] |
14 | 41.8 | 3.254 | 41.8 | 0 | 3.254 | medulloblastoma | [42] |
15 | 21.4 | 1.2 | 21.4 | 0 | 1.2 | brain | [25] |
Breast | |||||||
16 | 31.8 | 2.741 | 31.8 | 0 | 2.741 | breast | [41] |
17 | 11.8 | 0.775 | 15.2 | 0.58 | 0 | breast | [41] |
18 | 24.8 | 1.544 | 24.8 | 0 | 1.544 | breast | [41] |
19 | 20.1 | 1.054 | 20.2 | 0.18 | 0.638 | breast | [41] |
20 | 14.6 | 0.41 | 18.1 | 0.41 | 0 | breast | [43] |
21 | 12.5 | 0.837 | 17.4 | 0.6 | 0.0076 | breast | [44] |
22 | 8.3 | 0.617 | 11.2 | 0.54 | 0.009 | breast | [44] |
23 | 10.5 | 0.464 | 10.5 | 0 | 0.473 | breast | [45] |
Bone | |||||||
24 | 9.5 | 0.141 | 9.7 | 0.04 | 0.116 | skull | [42] |
25 | 20.9 | 0.537 | 20.9 | 0 | 0.537 | skull | [46] |
# | a | b | a | Tissue Discription | Ref | ||
---|---|---|---|---|---|---|---|
Fibrous tissue | |||||||
26 | 33.6 | 1.712 | 37.3 | 0.72 | 0 | tumor | [41] |
27 | 30.1 | 1.549 | 30.1 | 0.02 | 1.521 | prostate | [47] |
28 | 27.2 | 1.768 | 29.7 | 0.61 | 0.585 | glandular breast | [48] |
29 | 24.1 | 1.618 | 25.8 | 0.49 | 0.7845 | fibrocystic breast | [48] |
30 | 20.7 | 1.487 | 22.8 | 0.6 | 0.327 | carcinoma breast | [48] |
Fatty tissues | |||||||
31 | 13.7 | o.385 | 14.7 | 0.16 | 0.250 | Subcutaneous fat | [37] |
32 | 10.6 | 0.520 | 11.2 | 0.29 | 0.089 | Adipose breast | [48] |
33 | 15.4 | 0.680 | 15.4 | 0.00 | 0.680 | Subcutaneous adipose | [39] |
34 | 35.2 | 0.988 | 34.2 | 0.26 | 0.567 | Subcut. fat | [40] |
35 | 21.6 | 0.930 | 21.1 | 0.17 | 0.651 | Subcut. adipocytes | [40] |
36 | 14.1 | 0.530 | na | na | na | Adipose | [49] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batool, S.; Nisar, M.; Mangini, F.; Frezza, F.; Fazio, E. Scattering of Light from the Systemic Circulatory System. Diagnostics 2020, 10, 1026. https://doi.org/10.3390/diagnostics10121026
Batool S, Nisar M, Mangini F, Frezza F, Fazio E. Scattering of Light from the Systemic Circulatory System. Diagnostics. 2020; 10(12):1026. https://doi.org/10.3390/diagnostics10121026
Chicago/Turabian StyleBatool, Sidra, Mehwish Nisar, Fabio Mangini, Fabrizio Frezza, and Eugenio Fazio. 2020. "Scattering of Light from the Systemic Circulatory System" Diagnostics 10, no. 12: 1026. https://doi.org/10.3390/diagnostics10121026
APA StyleBatool, S., Nisar, M., Mangini, F., Frezza, F., & Fazio, E. (2020). Scattering of Light from the Systemic Circulatory System. Diagnostics, 10(12), 1026. https://doi.org/10.3390/diagnostics10121026