Identification of Human Ovarian Adenocarcinoma Cells with Cisplatin-Resistance by Feature Extraction of Gray Level Co-Occurrence Matrix Using Optical Images
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Janda, M.; McGrath, S.; Obermair, A. Challenges and controversies in the conservative management of uterine and ovarian cancer. Best Pract. Res. Clin. Obstet. Gynaecol. 2019, 55, 93–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jendželovský, R.; Jendželovská, Z.; Hiľovská, L.; Kovaľ, J.; Mikeš, J.; Fedoročko, P. Proadifen sensitizes resistant ovarian adenocarcinoma cells to cisplatin. Toxicol. Lett. 2016, 243, 56–66. [Google Scholar] [CrossRef] [PubMed]
- Anglesio, M.S.; Wiegand, K.C.; Melnyk, N.; Chow, C.; Salamanca, C.; Prentice, L.M.; Senz, J.; Yang, W.; Spillman, M.A.; Cochrane, D.R.; et al. Type-specific cell line models for type-specific ovarian cancer research. PLoS ONE 2013, 8, e72162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, S.K.; Schreiber, C.L.; Roland, F.M.; Battles, P.M.; Brennan, S.P.; Padanilam, S.J.; Smith, B.D. High expression of integrin αvβ3 enables uptake of targeted fluorescent probes into ovarian cancer cells and tumors. Bioorg. Med. Chem. 2018, 26, 2085–2091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rivard, C.; Geller, M.; Schnettler, E.; Saluja, M.; Vogel, R.I.; Saluja, A.; Ramakrishnan, S. Inhibition of epithelial ovarian cancer by Minnelide, a water-soluble pro-drug. Gynecol. Oncol. 2014, 135, 318–324. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carduner, L.; Picot, C.R.; Leroy-Dudal, J.; Blay, L.; Kellouche, S.; Carreiras, F. Cell cycle arrest or survival signaling through αv integrins, activation of PKC and ERK1/2 lead to anoikis resistance of ovarian cancer spheroids. Exp. Cell Res. 2014, 320, 329–342. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, K.; Rosin, P.L.; Marshall, D.; Moore, S.C. Detecting violent and abnormal crowd activity using temporal analysis of grey level co-occurrence matrix (GLCM)-based texture measures. Mach. Vis. Appl. 2017, 28, 361–371. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.; Shanmugam, K.; Dinstein, I.H. Textural features for image classif. IEEE Trans. Ind. Electron. 1973, 3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Molina, D.; Pérez-Beteta, J.; Martínez-González, A.; Martino, J.; Velásquez, C.; Arana, E.; Pérez-García, V.M. Influence of gray level and space discretization on brain tumor heterogeneity measures obtained from magnetic resonance images. Comput. Biol. Med. 2016, 78, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Vallabhaneni, R.B.; Rajesh, V. Brain tumour detection using mean shift clustering and GLCM features with edge adaptive total variation denoising technique. Alex. Eng. J. 2018, 57, 2387–2392. [Google Scholar] [CrossRef]
- Xian, G.-M. An identification method of malignant and benign liver tumors from ultrasonography based on GLCM texture features and fuzzy SVM. Expert Syst. Appl. 2010, 37, 6737–6741. [Google Scholar] [CrossRef]
- Öztürk, Ş.; Akdemir, B. Application of Feature Extraction and Classification Methods for Histopathological Image using GLCM, LBP, LBGLCM, GLRLM and SFTA. Procedia Comput. Sci. 2018, 132, 40–46. [Google Scholar] [CrossRef]
- Lian, M.-J.; Huang, C.-L. Texture feature extraction of gray-level co-occurrence matrix for metastatic cancer cells using scanned laser pico-projection images. Lasers Med. Sci. 2019, 34, 1503–1508. [Google Scholar] [CrossRef] [PubMed]
- Lian, M.-J.; Huang, C.-L.; Lee, T.-M. Automation Characterization for Oral Cancer by Pathological Image Processing with Gray-Level Co-occurrence Matrix. J. Image Graph. 2018, 6, 80–83. [Google Scholar] [CrossRef]
- Solár, P.; Sytkowski, A.J. Differentially expressed genes associated with cisplatin resistance in human ovarian adenocarcinoma cell line A2780. Cancer lett. 2011, 309, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.; Lu, Y.; Tian, H.; Meng, X.; Wei, M.; Cho, W.C. Chemoresistance mechanisms of breast cancer and their countermeasures. Biomed. Pharmacother. 2019, 114, 108800. [Google Scholar] [CrossRef] [PubMed]
- Kawahara, B.; Ramadoss, S.; Chaudhuri, G.; Janzen, C.; Sen, S.; Mascharak, P.K. Carbon monoxide sensitizes cisplatin-resistant ovarian cancer cell lines toward cisplatin via attenuation of levels of glutathione and nuclear metallothionein. J. Inorg. Biochem. 2019, 191, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Villedieu, M.; Deslandes, E.; Duval, M.; Héron, J.F.; Gauduchon, P.; Poulain, L. Acquisition of chemoresistance following discontinuous exposures to cisplatin is associated in ovarian carcinoma cells with progressive alteration of FAK, ERK and p38 activation in response to treatment. Gynecol. Oncol. 2006, 101, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Rezania, A.; Atouei, S.A.; Rosendahl, L. Critical parameters in integration of thermoelectric generators and phase change materials by numerical and Taguchi methods. Mater. Today Energy 2020, 16, 100376. [Google Scholar] [CrossRef]
- Avikal, S.; Nithin Kumar, K.C.; Singh, A.R.; Jain, R. Grey based Taguchi optimization for multi-lobe bearing. Mater. Today Proc. 2020. [Google Scholar] [CrossRef]
- Duran-Sierra, E.; Cheng, S.; Cuenca-Martinez, R.; Malik, B.; Maitland, K.C.; Lisa Cheng, Y.S.; Wright, J.; Ahmed, B.; Ji, J.; Martinez, M.; et al. Clinical label-free biochemical and metabolic fluorescence lifetime endoscopic imaging of precancerous and cancerous oral lesions. Oral Oncol. 2020, 105. [Google Scholar] [CrossRef] [PubMed]
- Hoshiba, T. An extracellular matrix (ECM) model at high malignant colorectal tumor increases chondroitin sulfate chains to promote epithelial-mesenchymal transition and chemoresistance acquisition. Exp. Cell Res. 2018, 370, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Waring, J.; Lindvall, C.; Umeton, R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020, 104. [Google Scholar] [CrossRef] [PubMed]
- Raghavendra, U.; Gudigar, A.; Rao, T.N.; Ciaccio, E.J.; Ng, E.Y.K.; Rajendra Acharya, U. Computer-aided diagnosis for the identification of breast cancer using thermogram images: A comprehensive review. Infrared Phys. Technol. 2019, 102. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, G.; Choi, K.-S.; Lam, K.-M.; Lu, J. Output based transfer learning with least squares support vector machine and its application in bladder cancer prognosis. Neurocomputing 2020, 387, 279–292. [Google Scholar] [CrossRef]
Cell | Feature | WT | CP | p-Value |
---|---|---|---|---|
OVCAR-4 | Contrast (×103) | 0.54 ± 0.08 | 0.53 ± 0.07 | 0.86 |
Entropy (×100) | 6.36 ± 0.22 | 7.70 ± 0.26 | *** | |
Energy (×10−3) | 3.80 ± 0.84 | 0.83 ± 0.32 | *** | |
Homogeneity (×10−1) | 1.99 ± 0.18 | 0.99 ± 0.10 | *** | |
A2780 | Contrast (×103) | 0.91 ± 0.13 | 1.35 ± 0.19 | ** |
Entropy (×100) | 8.23 ± 0.21 | 8.85 ± 0.11 | *** | |
Energy (×10−3) | 0.45 ± 0.11 | 0.20 ± 0.03 | *** | |
Homogeneity (×10−1) | 0.60 ± 0.08 | 0.40 ± 0.03 | ** | |
IGROV1 | Contrast (×103) | 0.74 ± 0.15 | 1.32 ± 0.09 | *** |
Entropy (×100) | 7.92 ± 0.21 | 9.41 ± 0.06 | *** | |
Energy (×10−3) | 0.61 ± 0.12 | 0.18 ± 0.01 | *** | |
Homogeneity (×10−1) | 0.71 ± 0.09 | 0.33 ± 0.01 | *** |
Cells | WT | CP | p-Value |
---|---|---|---|
OVCAR-4 | 17.93 ± 0.59 | 21.76 ± 0.50 | *** |
A2780 | 23.37 ± 0.42 | 24.44 ± 0.17 | *** |
IGROV1 | 22.81 ± 0.43 | 25.09 ± 0.07 | *** |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, C.-L.; Lian, M.-J.; Wu, Y.-H.; Chen, W.-M.; Chiu, W.-T. Identification of Human Ovarian Adenocarcinoma Cells with Cisplatin-Resistance by Feature Extraction of Gray Level Co-Occurrence Matrix Using Optical Images. Diagnostics 2020, 10, 389. https://doi.org/10.3390/diagnostics10060389
Huang C-L, Lian M-J, Wu Y-H, Chen W-M, Chiu W-T. Identification of Human Ovarian Adenocarcinoma Cells with Cisplatin-Resistance by Feature Extraction of Gray Level Co-Occurrence Matrix Using Optical Images. Diagnostics. 2020; 10(6):389. https://doi.org/10.3390/diagnostics10060389
Chicago/Turabian StyleHuang, Chih-Ling, Meng-Jia Lian, Yi-Hsuan Wu, Wei-Ming Chen, and Wen-Tai Chiu. 2020. "Identification of Human Ovarian Adenocarcinoma Cells with Cisplatin-Resistance by Feature Extraction of Gray Level Co-Occurrence Matrix Using Optical Images" Diagnostics 10, no. 6: 389. https://doi.org/10.3390/diagnostics10060389
APA StyleHuang, C. -L., Lian, M. -J., Wu, Y. -H., Chen, W. -M., & Chiu, W. -T. (2020). Identification of Human Ovarian Adenocarcinoma Cells with Cisplatin-Resistance by Feature Extraction of Gray Level Co-Occurrence Matrix Using Optical Images. Diagnostics, 10(6), 389. https://doi.org/10.3390/diagnostics10060389