From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases
Abstract
:1. Current Challenges in Lung Disease Management
2. Imaging and Pathology for Diagnosis of Lung Fibrosis in Clinical Practice
2.1. Diagnostic Imaging of ILD in Clinical Practice
2.2. HRCT-Derived Biomarkers of UIP
2.3. Histopathological Features of the UIP Pattern
2.4. BAL Analysis in Parallel with HRCT
2.5. The Role of HRCT in Clinical Lung Fibrosis Research
2.6. MRI of the Lung in Clinical Practice
3. The Multimodal Toolbox for Biomedical Lung Disease Research
3.1. Correlating Non-Invasive In Vivo Imaging with Non-Destructive Ex Vivo Organ Imaging and Histopathology
3.2. Non-Invasive Modalities for Longitudinal In Vivo Lung Imaging
3.2.1. In Vivo Longitudinal Lung µCT and µCT-Derived Biomarkers
3.2.2. Radiation Safety of Repeated Low-Dose µCT of Mouse Models of Lung Disease
3.2.3. Dose Reduction Approaches for Respiratory-Gated µCT
3.2.4. In Vivo MRI for Small Animal Lung Fibrosis Imaging
3.2.5. In Vivo Optical Imaging of Lung Diseases: From the Whole-Body Level to the Cellular Scale
3.3. Non-Destructive 3D Ex Vivo Lung Imaging
3.3.1. Ex Vivo µCT Visualizes Lung Parenchyma and Vasculature in 3D
3.3.2. Optical Imaging of Intact Lungs with OPT and SPIM
4. Discussion
4.1. A Multimodal Lung Imaging Approach to Improve Translation between Bench and Bedside
4.2. Ethical Impact and Considerations of Non-Invasive Imaging in Lung Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moore, B.B.; Hogaboam, C.M. Murine models of pulmonary fibrosis. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L152–L160. [Google Scholar] [CrossRef] [Green Version]
- Moeller, A.; Ask, K.; Warburton, D.; Gauldie, J.; Kolb, M. The bleomycin animal model: A useful tool to investigate treatment options for idiopathic pulmonary fibrosis? Int. J. Biochem. Cell Biol. 2008, 40, 362–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leso, V.; Fontana, L.; Romano, R.; Gervetti, P.; Iavicoli, I. Artificial Stone Associated Silicosis: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gammon, S.T.; Foje, N.; Brewer, E.M.; Owers, E.; Downs, C.A.; Budde, M.D.; Leevy, W.M.; Helms, M.N. Preclinical anatomical, molecular, and functional imaging of the lung with multiple modalities. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L897–L914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vande Velde, G.; De Langhe, E.; Poelmans, J.; Dresselaers, T.; Lories, R.J.; Himmelreich, U. Magnetic resonance imaging for noninvasive assessment of lung fibrosis onset and progression: Cross-validation and comparison of different magnetic resonance imaging protocols with micro-computed tomography and histology in the bleomycin-induced mouse model. Investig. Radiol. 2014, 49, 691–698. [Google Scholar] [CrossRef]
- De Langhe, E.; Vande Velde, G.; Hostens, J.; Himmelreich, U.; Nemery, B.; Luyten, F.P.; Vanoirbeek, J.; Lories, R.J. Quantification of lung fibrosis and emphysema in mice using automated micro-computed tomography. PLoS ONE 2012, 7, e43123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vande Velde, G.; De Langhe, E.; Poelmans, J.; Bruyndonckx, P.; d’Agostino, E.; Verbeken, E.; Bogaerts, R.; Lories, R.; Himmelreich, U. Longitudinal in vivo microcomputed tomography of mouse lungs: No evidence for radiotoxicity. Am. J. Physiol. Lung Cell. Mol. Physiol. 2015, 309, L271–L279. [Google Scholar] [CrossRef]
- Vande Velde, G.; Poelmans, J.; De Langhe, E.; Hillen, A.; Vanoirbeek, J.; Himmelreich, U.; Lories, R.J. Longitudinal micro-CT provides biomarkers of lung disease that can be used to assess the effect of therapy in preclinical mouse models, and reveal compensatory changes in lung volume. Dis. Models Mech. 2016, 9, 91–98. [Google Scholar] [CrossRef] [Green Version]
- Dekoster, K.; Decaesteker, T.; Berghen, N.; Broucke, S.V.d.; Jonckheere, A.-C.; Wouters, J.; Krouglov, A.; Lories, R.; Langhe, E.D.; Hoet, P.; et al. Longitudinal micro-Computed Tomography-derived biomarkers quantify non-resolving lung fibrosis in a silicosis mouse model. Sci. Rep 2020, in press. [Google Scholar]
- Glaab, T.; Taube, C.; Braun, A.; Mitzner, W. Invasive and noninvasive methods for studying pulmonary function in mice. Respir. Res. 2007, 8, 63. [Google Scholar] [CrossRef] [Green Version]
- Hoymann, H.G. Invasive and noninvasive lung function measurements in rodents. J. Pharmacol. Toxicol. Methods 2007, 55, 16–26. [Google Scholar] [CrossRef] [PubMed]
- Vanoirbeek, J.A.; Rinaldi, M.; De Vooght, V.; Haenen, S.; Bobic, S.; Gayan-Ramirez, G.; Hoet, P.H.; Verbeken, E.; Decramer, M.; Nemery, B.; et al. Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am. J. Respir. Cell. Mol. Biol. 2010, 42, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Raghu, G.; Remy-Jardin, M.; Myers, J.L.; Richeldi, L.; Ryerson, C.J.; Lederer, D.J.; Behr, J.; Cottin, V.; Danoff, S.K.; Morell, F.; et al. Diagnosis of Idiopathic Pulmonary Fibrosis. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline. Am. J. Respir. Crit. Care Med. 2018, 198, e44–e68. [Google Scholar] [CrossRef] [PubMed]
- Hansell, D.M.; Bankier, A.A.; MacMahon, H.; McLoud, T.C.; Müller, N.L.; Remy, J. Fleischner Society: Glossary of terms for thoracic imaging. Radiology 2008, 246, 697–722. [Google Scholar] [CrossRef] [Green Version]
- Watadani, T.; Sakai, F.; Johkoh, T.; Noma, S.; Akira, M.; Fujimoto, K.; Bankier, A.A.; Lee, K.S.; Müller, N.L.; Song, J.W.; et al. Interobserver variability in the CT assessment of honeycombing in the lungs. Radiology 2013, 266, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Sumikawa, H.; Johkoh, T.; Colby, T.V.; Ichikado, K.; Suga, M.; Taniguchi, H.; Kondoh, Y.; Ogura, T.; Arakawa, H.; Fujimoto, K.; et al. Computed tomography findings in pathological usual interstitial pneumonia: Relationship to survival. Am. J. Respir. Crit. Care Med. 2008, 177, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.L.; Sverzellati, N.; Devaraj, A.; Keir, G.J.; Wells, A.U.; Hansell, D.M. Connective tissue disease related fibrotic lung disease: High resolution computed tomographic and pulmonary function indices as prognostic determinants. Thorax 2014, 69, 216–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raghu, G.; Collard, H.R.; Egan, J.J.; Martinez, F.J.; Behr, J.; Brown, K.K.; Colby, T.V.; Cordier, J.F.; Flaherty, K.R.; Lasky, J.A.; et al. An official ATS/ERS/JRS/ALAT statement: Idiopathic pulmonary fibrosis: Evidence-based guidelines for diagnosis and management. Am. J. Respir. Crit. Care Med. 2011, 183, 788–824. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.C.; Raghu, G. Bronchoalveolar lavage for the evaluation of interstitial lung disease: Is it clinically useful? Eur. Respir. J. 2011, 38, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Meyer, K.C.; Raghu, G.; Baughman, R.P.; Brown, K.K.; Costabel, U.; du Bois, R.M.; Drent, M.; Haslam, P.L.; Kim, D.S.; Nagai, S.; et al. An official American Thoracic Society clinical practice guideline: The clinical utility of bronchoalveolar lavage cellular analysis in interstitial lung disease. Am. J. Respir. Crit. Care Med. 2012, 185, 1004–1014. [Google Scholar] [CrossRef]
- Invernizzi, R.; Barnett, J.; Rawal, B.; Nair, A.; Ghai, P.; Kingston, S.; Chua, F.; Wu, Z.; Wells, A.U.; Renzoni, E.R.; et al. Bacterial burden in the lower airways predicts disease progression in idiopathic pulmonary fibrosis and is independent of radiological disease extent. Eur. Respir. J. 2020, 55. [Google Scholar] [CrossRef]
- Flaherty, K.R.; Mumford, J.A.; Murray, S.; Kazerooni, E.A.; Gross, B.H.; Colby, T.V.; Travis, W.D.; Flint, A.; Toews, G.B.; Lynch, J.P., III; et al. Prognostic implications of physiologic and radiographic changes in idiopathic interstitial pneumonia. Am. J. Respir. Crit. Care Med. 2003, 168, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Humphries, S.M.; Swigris, J.J.; Brown, K.K.; Strand, M.; Gong, Q.; Sundy, J.S.; Raghu, G.; Schwarz, M.I.; Flaherty, K.R.; Sood, R.; et al. Quantitative high-resolution computed tomography fibrosis score: Performance characteristics in idiopathic pulmonary fibrosis. Eur. Respir. J. 2018, 52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, S.M.; Yagihashi, K.; Huckleberry, J.; Rho, B.H.; Schroeder, J.D.; Strand, M.; Schwarz, M.I.; Flaherty, K.R.; Kazerooni, E.A.; van Beek, E.J.R.; et al. Idiopathic Pulmonary Fibrosis: Data-driven Textural Analysis of Extent of Fibrosis at Baseline and 15-Month Follow-up. Radiology 2017, 285, 270–278. [Google Scholar] [CrossRef] [PubMed]
- Lynch, D.A.; Godwin, J.D.; Safrin, S.; Starko, K.M.; Hormel, P.; Brown, K.K.; Raghu, G.; King, T.E., Jr.; Bradford, W.Z.; Schwartz, D.A.; et al. High-resolution computed tomography in idiopathic pulmonary fibrosis: Diagnosis and prognosis. Am. J. Respir. Crit. Care Med. 2005, 172, 488–493. [Google Scholar] [CrossRef] [PubMed]
- Jacob, J.; Aksman, L.; Mogulkoc, N.; Procter, A.J.; Gholipour, B.; Cross, G.; Barnett, J.; Brereton, C.J.; Jones, M.G.; van Moorsel, C.H.; et al. Serial CT analysis in idiopathic pulmonary fibrosis: Comparison of visual features that determine patient outcome. Thorax 2020, 75, 648–654. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.L.F. Imaging biomarkers and staging in IPF. Curr. Opin. Pulm. Med. 2018, 24, 445–452. [Google Scholar] [CrossRef]
- Jacob, J.; Bartholmai, B.J.; Rajagopalan, S.; Kokosi, M.; Nair, A.; Karwoski, R.; Walsh, S.L.; Wells, A.U.; Hansell, D.M. Mortality prediction in idiopathic pulmonary fibrosis: Evaluation of computer-based CT analysis with conventional severity measures. Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [Green Version]
- Jacob, J.; Bartholmai, B.J.; van Moorsel, C.H.M.; Rajagopalan, S.; Devaraj, A.; van Es, H.W.; Moua, T.; van Beek, F.T.; Clay, R.; Veltkamp, M.; et al. Longitudinal prediction of outcome in idiopathic pulmonary fibrosis using automated CT analysis. Eur. Respir. J. 2019, 54. [Google Scholar] [CrossRef] [Green Version]
- Mai, C.; Verleden, S.E.; McDonough, J.E.; Willems, S.; De Wever, W.; Coolen, J.; Dubbeldam, A.; Van Raemdonck, D.E.; Verbeken, E.K.; Verleden, G.M.; et al. Thin-Section CT Features of Idiopathic Pulmonary Fibrosis Correlated with Micro-CT and Histologic Analysis. Radiology 2017, 283, 252–263. [Google Scholar] [CrossRef]
- Verleden, S.E.; Tanabe, N.; McDonough, J.E.; Vasilescu, D.M.; Xu, F.; Wuyts, W.A.; Piloni, D.; De Sadeleer, L.; Willems, S.; Mai, C.; et al. Small airways pathology in idiopathic pulmonary fibrosis: A retrospective cohort study. Lancet Respir. Med. 2020, 8, 573–584. [Google Scholar] [CrossRef]
- Vasilescu, D.M.; Phillion, A.B.; Tanabe, N.; Kinose, D.; Paige, D.F.; Kantrowitz, J.J.; Liu, G.; Liu, H.; Fishbane, N.; Verleden, S.E.; et al. Nondestructive cryomicro-CT imaging enables structural and molecular analysis of human lung tissue. J. Appl. Physiol. 2017, 122, 161–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDonough, J.E.; Ahangari, F.; Li, Q.; Jain, S.; Verleden, S.E.; Herazo-Maya, J.; Vukmirovic, M.; DeIuliis, G.; Tzouvelekis, A.; Tanabe, N.; et al. Transcriptional regulatory model of fibrosis progression in the human lung. JCI Insight 2019, 4. [Google Scholar] [CrossRef] [PubMed]
- Kreitner, K.F.; Ley, S.; Kauczor, H.U.; Mayer, E.; Kramm, T.; Pitton, M.B.; Krummenauer, F.; Thelen, M. Chronic thromboembolic pulmonary hypertension: Pre- and postoperative assessment with breath-hold MR imaging techniques. Radiology 2004, 232, 535–543. [Google Scholar] [CrossRef]
- Kauczor, H.U.; Hofmann, D.; Kreitner, K.F.; Nilgens, H.; Surkau, R.; Heil, W.; Potthast, A.; Knopp, M.V.; Otten, E.W.; Thelen, M. Normal and abnormal pulmonary ventilation: Visualization at hyperpolarized He-3 MR imaging. Radiology 1996, 201, 564–568. [Google Scholar] [CrossRef]
- Coolen, J.; De Keyzer, F.; Nafteux, P.; De Wever, W.; Dooms, C.; Vansteenkiste, J.; Roebben, I.; Verbeken, E.; De Leyn, P.; Van Raemdonck, D.; et al. Malignant pleural disease: Diagnosis by using diffusion-weighted and dynamic contrast-enhanced MR imaging—initial experience. Radiology 2012, 263, 884–892. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, H.; Ambalavanan, N.; Liu, G.; Antony, V.B.; Ding, Q.; Nath, H.; Eary, J.F.; Thannickal, V.J. Noninvasive imaging of experimental lung fibrosis. Am. J. Respir. Cell Mol. Biol. 2015, 53, 8–13. [Google Scholar] [CrossRef]
- Marien, E.; Hillen, A.; Vanderhoydonc, F.; Swinnen, J.V.; Vande Velde, G. Longitudinal microcomputed tomography-derived biomarkers for lung metastasis detection in a syngeneic mouse model: Added value to bioluminescence imaging. Lab. Investig. 2017, 97, 24–33. [Google Scholar] [CrossRef]
- Poelmans, J.; Hillen, A.; Vanherp, L.; Govaerts, K.; Maertens, J.; Dresselaers, T.; Himmelreich, U.; Lagrou, K.; Vande Velde, G. Longitudinal, in vivo assessment of invasive pulmonary aspergillosis in mice by computed tomography and magnetic resonance imaging. Lab. Invest. 2016, 96, 692–704. [Google Scholar] [CrossRef]
- Rodt, T.; von Falck, C.; Dettmer, S.; Halter, R.; Maus, R.; Ask, K.; Kolb, M.; Gauldie, J.; Länger, F.; Hoy, L.; et al. Micro-computed tomography of pulmonary fibrosis in mice induced by adenoviral gene transfer of biologically active transforming growth factor-β1. Respir. Res. 2010, 11, 181. [Google Scholar] [CrossRef] [Green Version]
- Boudewijns, R.; Thibaut, H.J.; Kaptein, S.J.F.; Li, R.; Vergote, V.; Seldeslachts, L.; De Keyzer, C.; Bervoets, L.; Sharma, S.; Van Weyenbergh, J.; et al. STAT2 signaling as double-edged sword restricting viral dissemination but driving severe pneumonia in SARS-CoV-2 infected hamsters. BioRxiv 2020. [Google Scholar] [CrossRef]
- Tsui, H.C.; Decaesteker, T.; Jonckheere, A.C.; Vande Velde, G.; Cremer, J.; Verbeken, E.; Hoet, P.H.M.; Nemery, B.; Vanoirbeek, J.A.J. Cobalt exposure via skin alters lung immune cells and enhances pulmonary responses to cobalt in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Kaptein, S.J.F.; Jacobs, S.; Langendries, L.; Seldeslachts, L.; ter Horst, S.; Liesenborghs, L.; Hens, B.; Vergote, V.; Heylen, E.; Maas, E.; et al. Antiviral treatment of SARS-CoV-2-infected hamsters reveals a weak effect of favipiravir and a complete lack of effect for hydroxychloroquine. BioRxiv 2020. [Google Scholar] [CrossRef]
- Vanherp, L.; Poelmans, J.; Hillen, A.; Janbon, G.; Brock, M.; Lagrou, K.; Vande Velde, G.; Himmelreich, U. The Added Value of Longitudinal Imaging for Preclinical In Vivo Efficacy Testing of Therapeutic Compounds against Cerebral Cryptococcosis. Antimicrob. Agents Chemother. 2020, 64. [Google Scholar] [CrossRef] [PubMed]
- Vanherp, L.; Ristani, A.; Poelmans, J.; Hillen, A.; Lagrou, K.; Janbon, G.; Brock, M.; Himmelreich, U.; Vande Velde, G. Sensitive bioluminescence imaging of fungal dissemination to the brain in mouse models of cryptococcosis. Dis. Models Mech. 2019, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salaets, T.; Gie, A.; Jimenez, J.; Aertgeerts, M.; Gheysens, O.; Vande Velde, G.; Koole, M.; Murgia, X.; Casiraghi, C.; Ricci, F.; et al. Local pulmonary drug delivery in the preterm rabbit: Feasibility and efficacy of daily intratracheal injections. Am. J. Physiol. Lung Cell. Mol. Physiol. 2019, 316, L589–L597. [Google Scholar] [CrossRef]
- Van Den Broucke, S.; Pollaris, L.; Vande Velde, G.; Verbeken, E.; Nemery, B.; Vanoirbeek, J.; Hoet, P. Irritant-induced asthma to hypochlorite in mice due to impairment of the airway barrier. Arch. Toxicol. 2018, 92, 1551–1561. [Google Scholar] [CrossRef]
- Egger, C.; Gérard, C.; Vidotto, N.; Accart, N.; Cannet, C.; Dunbar, A.; Tigani, B.; Piaia, A.; Jarai, G.; Jarman, E.; et al. Lung volume quantified by MRI reflects extracellular-matrix deposition and altered pulmonary function in bleomycin models of fibrosis: Effects of SOM230. Am. J. Physiol. Lung Cell. Mol. Physiol. 2014, 306, L1064–L1077. [Google Scholar] [CrossRef] [Green Version]
- Mahmutovic Persson, I.; Falk Håkansson, H.; Örbom, A.; Liu, J.; von Wachenfeldt, K.; Olsson, L.E. Imaging Biomarkers and Pathobiological Profiling in a Rat Model of Drug-Induced Interstitial Lung Disease Induced by Bleomycin. Front. Physiol. 2020, 11. [Google Scholar] [CrossRef]
- Devos, F.C.; Maaske, A.; Robichaud, A.; Pollaris, L.; Seys, S.; Lopez, C.A.; Verbeken, E.; Tenbusch, M.; Lories, R.; Nemery, B.; et al. Forced expiration measurements in mouse models of obstructive and restrictive lung diseases. Respir. Res. 2017, 18, 123. [Google Scholar] [CrossRef] [Green Version]
- Anuranjani; Bala, M. Concerted action of Nrf2-ARE pathway, MRN complex, HMGB1 and inflammatory cytokines—Implication in modification of radiation damage. Redox Biol. 2014, 2, 832–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douki, T.; Ksoury, Z.; Marie, C.; Favier, A.; Ravanat, J.L.; Maitre, A. Genotoxicity of combined exposure to polycyclic aromatic hydrocarbons and UVA--a mechanistic study. Photochem. Photobiol. 2008, 84, 1133–1140. [Google Scholar] [CrossRef]
- Berghen, N.; Dekoster, K.; Marien, E.; Dabin, J.; Hillen, A.; Wouters, J.; Deferme, J.; Vosselman, T.; Tiest, E.; Lox, M.; et al. Radiosafe micro-computed tomography for longitudinal evaluation of murine disease models. Sci. Rep. 2019, 9, 17598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bartling, S.H.; Stiller, W.; Grasruck, M.; Schmidt, B.; Peschke, P.; Semmler, W.; Kiessling, F. Retrospective motion gating in small animal CT of mice and rats. Investig. Radiol. 2007, 42, 704–714. [Google Scholar] [CrossRef] [PubMed]
- Cavanaugh, D.; Johnson, E.; Price, R.E.; Kurie, J.; Travis, E.L.; Cody, D.D. In vivo respiratory-gated micro-CT imaging in small-animal oncology models. Mol. Imaging 2004, 3, 55–62. [Google Scholar] [CrossRef]
- Badea, C.; Hedlund, L.W.; Johnson, G.A. Micro-CT with respiratory and cardiac gating. Med. Phys. 2004, 31, 3324–3329. [Google Scholar] [CrossRef] [Green Version]
- Ford, N.L.; Wheatley, A.R.; Holdsworth, D.W.; Drangova, M. Optimization of a retrospective technique for respiratory-gated high speed micro-CT of free-breathing rodents. Phys. Med. Biol. 2007, 52, 5749–5769. [Google Scholar] [CrossRef]
- Walters, E.B.; Panda, K.; Bankson, J.A.; Brown, E.; Cody, D.D. Improved method of in vivo respiratory-gated micro-CT imaging. Phys. Med. Biol. 2004, 49, 4163–4172. [Google Scholar] [CrossRef]
- Lee, Y.Z.; Burk, L.M.; Wang, K.-h.; Cao, G.; Volmer, J.; Lu, J.; Zhou, O. Prospective respiratory gated carbon nanotube micro computed tomography. Acad. Radiol. 2011, 18, 588–593. [Google Scholar] [CrossRef] [Green Version]
- Sawall, S.; Bergner, F.; Lapp, R.; Mronz, M.; Karolczak, M.; Hess, A.; Kachelriess, M. Low-dose cardio-respiratory phase-correlated cone-beam micro-CT of small animals. Med. Phys. 2011, 38, 1416–1424. [Google Scholar] [CrossRef]
- Ritschl, L.; Sawall, S.; Knaup, M.; Hess, A.; Kachelriess, M. Iterative 4D cardiac micro-CT image reconstruction using an adaptive spatio-temporal sparsity prior. Phys. Med. Biol. 2012, 57, 1517–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maier, J.; Sawall, S.; Kachelrieß, M. Assessment of dedicated low-dose cardiac micro-CT reconstruction algorithms using the left ventricular volume of small rodents as a performance measure. Med. Phys. 2014, 41, 051908. [Google Scholar] [CrossRef] [PubMed]
- Brehm, M.; Sawall, S.; Maier, J.; Sauppe, S.; Kachelrieß, M. Cardiorespiratory motion-compensated micro-CT image reconstruction using an artifact model-based motion estimation. Med. Phys. 2015, 42, 1948–1958. [Google Scholar] [CrossRef] [PubMed]
- Brehm, M.; Paysan, P.; Oelhafen, M.; Kunz, P.; Kachelrieß, M. Self-adapting cyclic registration for motion-compensated cone-beam CT in image-guided radiation therapy. Med. Phys. 2012, 39, 7603–7618. [Google Scholar] [CrossRef]
- Brehm, M.; Paysan, P.; Oelhafen, M.; Kachelrieß, M. Artifact-resistant motion estimation with a patient-specific artifact model for motion-compensated cone-beam CT. Med. Phys. 2013, 40, 101913. [Google Scholar] [CrossRef] [PubMed]
- Rank, C.M.; Heußer, T.; Wetscherek, A.; Freitag, M.T.; Sedlaczek, O.; Schlemmer, H.-P.; Kachelrieß, M. Respiratory motion compensation for simultaneous PET/MR based on highly undersampled MR data. Med. Phys. 2016, 43, 6234. [Google Scholar] [CrossRef]
- Rank, C.M.; Heußer, T.; Buzan, M.T.A.; Wetscherek, A.; Freitag, M.T.; Dinkel, J.; Kachelrieß, M. 4D respiratory motion-compensated image reconstruction of free-breathing radial MR data with very high undersampling. Magn. Reson. Med. 2017, 77, 1170–1183. [Google Scholar] [CrossRef]
- Robson, M.D.; Gatehouse, P.D.; Bydder, M.; Bydder, G.M. Magnetic resonance: An introduction to ultrashort TE (UTE) imaging. J. Comput. Assist. Tomogr. 2003, 27, 825–846. [Google Scholar] [CrossRef]
- Karmouty-Quintana, H.; Cannet, C.; Zurbruegg, S.; Ble, F.X.; Fozard, J.R.; Page, C.P.; Beckmann, N. Bleomycin-induced lung injury assessed noninvasively and in spontaneously breathing rats by proton MRI. J. Magn. Reson. Imaging JMRI 2007, 26, 941–949. [Google Scholar] [CrossRef]
- Babin, A.L.; Cannet, C.; Gerard, C.; Wyss, D.; Page, C.P.; Beckmann, N. Noninvasive assessment of bleomycin-induced lung injury and the effects of short-term glucocorticosteroid treatment in rats using MRI. J. Magn. Reson. Imaging JMRI 2011, 33, 603–614. [Google Scholar] [CrossRef]
- Jacob, R.E.; Amidan, B.G.; Soelberg, J.; Minard, K.R. In vivo MRI of altered proton signal intensity and T2 relaxation in a bleomycin model of pulmonary inflammation and fibrosis. J. Magn. Reson. Imaging JMRI 2010, 31, 1091–1099. [Google Scholar] [CrossRef] [PubMed]
- Babin, A.L.; Cannet, C.; Gerard, C.; Saint-Mezard, P.; Page, C.P.; Sparrer, H.; Matsuguchi, T.; Beckmann, N. Bleomycin-induced lung injury in mice investigated by MRI: Model assessment for target analysis. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 2012, 67, 499–509. [Google Scholar] [CrossRef] [PubMed]
- Bergin, C.J.; Pauly, J.M.; Macovski, A. Lung parenchyma: Projection reconstruction MR imaging. Radiology 1991, 179, 777–781. [Google Scholar] [CrossRef]
- Ohno, Y.; Nishio, M.; Koyama, H.; Yoshikawa, T.; Matsumoto, S.; Seki, S.; Obara, M.; van Cauteren, M.; Takahashi, M.; Sugimura, K. Pulmonary 3 T MRI with ultrashort TEs: Influence of ultrashort echo time interval on pulmonary functional and clinical stage assessments of smokers. J. Magn. Reson. Imaging JMRI 2013. [Google Scholar] [CrossRef] [PubMed]
- Lederlin, M.; Cremillieux, Y. Three-dimensional assessment of lung tissue density using a clinical ultrashort echo time at 3 tesla: A feasibility study in healthy subjects. J. Magn. Reson. Imaging JMRI 2013. [Google Scholar] [CrossRef]
- Zurek, M.; Bessaad, A.; Cieslar, K.; Cremillieux, Y. Validation of simple and robust protocols for high-resolution lung proton MRI in mice. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med. 2010, 64, 401–407. [Google Scholar] [CrossRef]
- Takahashi, M.; Togao, O.; Obara, M.; van Cauteren, M.; Ohno, Y.; Doi, S.; Kuro-o, M.; Malloy, C.; Hsia, C.C.; Dimitrov, I. Ultra-short echo time (UTE) MR imaging of the lung: Comparison between normal and emphysematous lungs in mutant mice. J. Magn. Reson. Imaging JMRI 2010, 32, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Wurnig, M.C.; Tsushima, Y.; Weiger, M.; Jungraithmayr, W.; Boss, A. Assessing lung transplantation ischemia-reperfusion injury by microcomputed tomography and ultrashort echo-time magnetic resonance imaging in a mouse model. Investig. Radiol. 2014, 49, 23–28. [Google Scholar] [CrossRef] [Green Version]
- Strobel, K.; Hoerr, V.; Schmid, F.; Wachsmuth, L.; Loffler, B.; Faber, C. Early detection of lung inflammation: Exploiting T1-effects of iron oxide particles using UTE MRI. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2012, 68, 1924–1931. [Google Scholar] [CrossRef]
- Himmelreich, U.; Dresselaers, T. Cell labeling and tracking for experimental models using magnetic resonance imaging. Methods 2009, 48, 112–124. [Google Scholar] [CrossRef]
- Ebner, B.; Behm, P.; Jacoby, C.; Burghoff, S.; French, B.A.; Schrader, J.; Flogel, U. Early assessment of pulmonary inflammation by 19F MRI in vivo. Circ. Cardiovasc. Imaging 2010, 3, 202–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saini, S.; Poelmans, J.; Korf, H.; Dooley, J.L.; Liang, S.; Manshian, B.B.; Verbeke, R.; Soenen, S.J.; Vande Velde, G.; Lentacker, I.; et al. Longitudinal In Vivo Assessment of Host-Microbe Interactions in a Murine Model of Pulmonary Aspergillosis. iScience 2019, 20, 184–194. [Google Scholar] [CrossRef] [Green Version]
- Van Heeswijk, R.B.; Bonanno, G.; Coppo, S.; Coristine, A.; Kober, T.; Stuber, M. Motion compensation strategies in magnetic resonance imaging. Crit. Rev. Biomed. Eng. 2012, 40, 99–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heijman, E.; de Graaf, W.; Niessen, P.; Nauerth, A.; van Eys, G.; de Graaf, L.; Nicolay, K.; Strijkers, G.J. Comparison between prospective and retrospective triggering for mouse cardiac MRI. NMR Biomed. 2007, 20, 439–447. [Google Scholar] [CrossRef]
- Hiba, B.; Richard, N.; Janier, M.; Croisille, P. Cardiac and respiratory double self-gated cine MRI in the mouse at 7 T. Magn. Reson. Med. Off. J. Soc. Magn. Reson. Med. / Soc. Magn. Reson. Med. 2006, 55, 506–513. [Google Scholar] [CrossRef]
- Fries, P.; Seidel, R.; Muller, A.; Matthes, K.; Denda, G.; Massmann, A.; Menger, M.D.; Sperling, J.; Morelli, J.N.; Altmeyer, K.; et al. Comparison of self-gated and prospectively triggered fast low angle shot (FLASH) sequences for contrast-enhanced magnetic resonance imaging of the liver at 9.4 T in a rat model of colorectal cancer metastases. Investig. Radiol. 2013, 48, 738–744. [Google Scholar] [CrossRef] [PubMed]
- Poelmans, J.; Himmelreich, U.; Vanherp, L.; Zhai, L.; Hillen, A.; Holvoet, B.; Belderbos, S.; Brock, M.; Maertens, J.; Vande Velde, G.; et al. A Multimodal Imaging Approach Enables In Vivo Assessment of Antifungal Treatment in a Mouse Model of Invasive Pulmonary Aspergillosis. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Zelmer, A.; Carroll, P.; Andreu, N.; Hagens, K.; Mahlo, J.; Redinger, N.; Robertson, B.D.; Wiles, S.; Ward, T.H.; Parish, T.; et al. A new in vivo model to test anti-tuberculosis drugs using fluorescence imaging. J. Antimicrob. Chemother. 2012, 67, 1948–1960. [Google Scholar] [CrossRef]
- Withana, N.P.; Ma, X.; McGuire, H.M.; Verdoes, M.; van der Linden, W.A.; Ofori, L.O.; Zhang, R.; Li, H.; Sanman, L.E.; Wei, K.; et al. Non-invasive Imaging of Idiopathic Pulmonary Fibrosis Using Cathepsin Protease Probes. Sci. Rep. 2016, 6, 19755. [Google Scholar] [CrossRef]
- Rodriguez-Tirado, C.; Kitamura, T.; Kato, Y.; Pollard, J.W.; Condeelis, J.S.; Entenberg, D. Long-term High-Resolution Intravital Microscopy in the Lung with a Vacuum Stabilized Imaging Window. J. Vis. Exp. JoVE 2016. [Google Scholar] [CrossRef]
- Kitamura, T.; Pollard, J.W.; Vendrell, M. Optical Windows for Imaging the Metastatic Tumour Microenvironment in vivo. Trends Biotechnol. 2017, 35, 5–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Entenberg, D.; Voiculescu, S.; Guo, P.; Borriello, L.; Wang, Y.; Karagiannis, G.S.; Jones, J.; Baccay, F.; Oktay, M.; Condeelis, J. A permanent window for the murine lung enables high-resolution imaging of cancer metastasis. Nat. Methods 2018, 15, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Headley, M.B.; Bins, A.; Nip, A.; Roberts, E.W.; Looney, M.R.; Gerard, A.; Krummel, M.F. Visualization of immediate immune responses to pioneer metastatic cells in the lung. Nature 2016, 531, 513–517. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Podstawka, J.; Lou, Y.; Li, L.; Lee, E.K.S.; Divangahi, M.; Petri, B.; Jirik, F.R.; Kelly, M.M.; Yipp, B.G. Aged polymorphonuclear leukocytes cause fibrotic interstitial lung disease in the absence of regulation by B cells. Nat. Immunol. 2018, 19, 192–201. [Google Scholar] [CrossRef]
- Puttur, F.; Denney, L.; Gregory, L.G.; Vuononvirta, J.; Oliver, R.; Entwistle, L.J.; Walker, S.A.; Headley, M.B.; McGhee, E.J.; Pease, J.E.; et al. Pulmonary environmental cues drive group 2 innate lymphoid cell dynamics in mice and humans. Sci. Immunol. 2019, 4. [Google Scholar] [CrossRef] [Green Version]
- Vanherp, L.; Poelmans, J.; Hillen, A.; Govaerts, K.; Belderbos, S.; Buelens, T.; Lagrou, K.; Himmelreich, U.; Vande Velde, G. Bronchoscopic fibered confocal fluorescence microscopy for longitudinal in vivo assessment of pulmonary fungal infections in free-breathing mice. Sci. Rep. 2018, 8, 3009. [Google Scholar] [CrossRef] [Green Version]
- Zhao, C.; Fernandez, A.; Avlonitis, N.; Vande Velde, G.; Bradley, M.; Read, N.D.; Vendrell, M. Searching for the Optimal Fluorophore to Label Antimicrobial Peptides. ACS Comb. Sci. 2016, 18, 689–696. [Google Scholar] [CrossRef] [Green Version]
- Vendrell, M.; Zhai, D.; Er, J.C.; Chang, Y.T. Combinatorial strategies in fluorescent probe development. Chem. Rev. 2012, 112, 4391–4420. [Google Scholar] [CrossRef]
- Vendrell, M.; Samanta, A.; Yun, S.W.; Chang, Y.T. Synthesis and characterization of a cell-permeable near-infrared fluorescent deoxyglucose analogue for cancer cell imaging. Org. Biomol. Chem. 2011, 9, 4760–4762. [Google Scholar] [CrossRef]
- Vendrell, M.; Lee, J.S.; Chang, Y.T. Diversity-oriented fluorescence library approaches for probe discovery and development. Curr. Opin. Chem. Biol. 2010, 14, 383–389. [Google Scholar] [CrossRef]
- Vendrell, M.; Krishna, G.G.; Ghosh, K.K.; Zhai, D.; Lee, J.S.; Zhu, Q.; Yau, Y.H.; Shochat, S.G.; Kim, H.; Chung, J.; et al. Solid-phase synthesis of BODIPY dyes and development of an immunoglobulin fluorescent sensor. Chem. Commun. (Camb) 2011, 47, 8424–8426. [Google Scholar] [CrossRef]
- Er, J.C.; Tang, M.K.; Chia, C.G.; Liew, H.; Vendrell, M.; Chang, Y.-T. MegaStokes BODIPY-triazoles as environmentally sensitive turn-on fluorescent dyes. Chem. Sci. 2013, 4, 2168. [Google Scholar] [CrossRef]
- Yserbyt, J.; Dooms, C.; Ninane, V.; Decramer, M.; Verleden, G. Perspectives using probe-based confocal laser endomicroscopy of the respiratory tract. Swiss Med. Wkly. 2013, 143, w13764. [Google Scholar] [CrossRef] [PubMed]
- Cnudde, V.; Masschaele, B.; De Cock, H.E.; Olstad, K.; Vlaminck, L.; Vlassenbroeck, J.; Dierick, M.; Witte, Y.D.; Van Hoorebeke, L.; Jacobs, P. Virtual histology by means of high-resolution X-ray CT. J. Microsc. 2008, 232, 476–485. [Google Scholar] [CrossRef]
- Metscher, B.D. MicroCT for developmental biology: A versatile tool for high-contrast 3D imaging at histological resolutions. Dev. Dyn. 2009, 238, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Albers, J.; Pacilé, S.; Markus, M.A.; Wiart, M.; Vande Velde, G.; Tromba, G.; Dullin, C. X-ray-Based 3D Virtual Histology-Adding the Next Dimension to Histological Analysis. Mol. Imaging Biol. 2018, 20, 732–741. [Google Scholar] [CrossRef] [PubMed]
- Leszczyński, B.; Śniegocka, M.; Wróbel, A.; Pędrys, R.; Szczygieł, M.; Romanowska-Dixon, B.; Urbańska, K.; Elas, M. Visualization and Quantitative 3D Analysis of Intraocular Melanoma and Its Vascularization in a Hamster Eye. Int. J. Mol. Sci. 2018, 19, 332. [Google Scholar] [CrossRef] [Green Version]
- Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmüller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; et al. Pathology and pathobiology of pulmonary hypertension: State of the art and research perspectives. Eur. Respir. J. 2018. [Google Scholar] [CrossRef] [Green Version]
- Herbst, R.S.; Onn, A.; Sandler, A. Angiogenesis and Lung Cancer: Prognostic and Therapeutic Implications. J. Clin. Oncol. 2005, 23, 3243–3256. [Google Scholar] [CrossRef]
- Eldridge, L.; Wagner, E.M. Angiogenesis in the lung. J. Physiol. 2019, 597, 1023–1032. [Google Scholar] [CrossRef] [Green Version]
- Sharpe, J.; Ahlgren, U.; Perry, P.; Hill, B.; Ross, A.; Hecksher-Sorensen, J.; Baldock, R.; Davidson, D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Science 2002, 296, 541–545. [Google Scholar] [CrossRef] [Green Version]
- Huisken, J.; Swoger, J.; Del Bene, F.; Wittbrodt, J.; Stelzer, E.H. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 2004, 305, 1007–1009. [Google Scholar] [CrossRef] [Green Version]
- Alanentalo, T.; Asayesh, A.; Morrison, H.; Loren, C.E.; Holmberg, D.; Sharpe, J.; Ahlgren, U. Tomographic molecular imaging and 3D quantification within adult mouse organs. Nat. Methods 2007, 4, 31–33. [Google Scholar] [CrossRef]
- Masselink, W.; Reumann, D.; Murawala, P.; Pasierbek, P.; Taniguchi, Y.; Bonnay, F.; Meixner, K.; Knoblich, J.A.; Tanaka, E.M. Broad applicability of a streamlined ethyl cinnamate-based clearing procedure. Development 2019, 146. [Google Scholar] [CrossRef] [Green Version]
- Susaki, E.A.; Shimizu, C.; Kuno, A.; Tainaka, K.; Li, X.; Nishi, K.; Morishima, K.; Ono, H.; Ode, K.L.; Saeki, Y.; et al. Versatile whole-organ/body staining and imaging based on electrolyte-gel properties of biological tissues. Nat. Commun. 2020, 11, 1982. [Google Scholar] [CrossRef]
- Chung, K.; Wallace, J.; Kim, S.Y.; Kalyanasundaram, S.; Andalman, A.S.; Davidson, T.J.; Mirzabekov, J.J.; Zalocusky, K.A.; Mattis, J.; Denisin, A.K.; et al. Structural and molecular interrogation of intact biological systems. Nature 2013, 497, 332–337. [Google Scholar] [CrossRef]
- Chen, F.; Tillberg, P.W.; Boyden, E.S. Optical imaging. Expansion microscopy. Science 2015, 347, 543–548. [Google Scholar] [CrossRef] [Green Version]
- Ueda, H.R.; Erturk, A.; Chung, K.; Gradinaru, V.; Chedotal, A.; Tomancak, P.; Keller, P.J. Tissue clearing and its applications in neuroscience. Nat. Rev. Neurosci. 2020, 21, 61–79. [Google Scholar] [CrossRef]
- Kerwin, J.; Scott, M.; Sharpe, J.; Puelles, L.; Robson, S.C.; Martinez-de-la-Torre, M.; Ferran, J.L.; Feng, G.; Baldock, R.; Strachan, T.; et al. 3 dimensional modelling of early human brain development using optical projection tomography. BMC Neurosci. 2004, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- De Homdedeu, M.; Cruz, M.; Sanchez-Díez, S.; Ojanguren, I.; Romero-Mesones, C.; Vanoirbeek, J.; VandeVelde, G.; Muñoz, X. The immunomodulatory effects of diesel exhaust particles in asthma. Environ. Pollut. 2020, 263, 114600. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tielemans, B.; Dekoster, K.; Verleden, S.E.; Sawall, S.; Leszczyński, B.; Laperre, K.; Vanstapel, A.; Verschakelen, J.; Kachelriess, M.; Verbeken, E.; et al. From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases. Diagnostics 2020, 10, 636. https://doi.org/10.3390/diagnostics10090636
Tielemans B, Dekoster K, Verleden SE, Sawall S, Leszczyński B, Laperre K, Vanstapel A, Verschakelen J, Kachelriess M, Verbeken E, et al. From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases. Diagnostics. 2020; 10(9):636. https://doi.org/10.3390/diagnostics10090636
Chicago/Turabian StyleTielemans, Birger, Kaat Dekoster, Stijn E. Verleden, Stefan Sawall, Bartosz Leszczyński, Kjell Laperre, Arno Vanstapel, Johny Verschakelen, Marc Kachelriess, Erik Verbeken, and et al. 2020. "From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases" Diagnostics 10, no. 9: 636. https://doi.org/10.3390/diagnostics10090636
APA StyleTielemans, B., Dekoster, K., Verleden, S. E., Sawall, S., Leszczyński, B., Laperre, K., Vanstapel, A., Verschakelen, J., Kachelriess, M., Verbeken, E., Swoger, J., & Vande Velde, G. (2020). From Mouse to Man and Back: Closing the Correlation Gap between Imaging and Histopathology for Lung Diseases. Diagnostics, 10(9), 636. https://doi.org/10.3390/diagnostics10090636