Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Clinical Material
2.2. Sample Preparation and Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS) Analysis
2.3. MS Data Processing and Statistical Analysis
2.4. Bioinformatics Analysis
2.5. Transcriptomics Analysis
3. Results
3.1. Proteomics Analysis
3.2. Differences in Protein Abundance between Patients with PCa and BPH
3.3. Association of Protein Abundance with PCa Progression
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
Abbreviations
ACACA | acetyl-CoA carboxylase 1 |
ACLY | ATP-citrate synthase |
ACO2 | aconitate hydratase, mitochondrial |
ACTB | actin, cytoplasmic 1 |
ACTG2 | actin, gamma-enteric smooth muscle |
AKR1B1 | aldo-keto reductase family 1 member B1 |
ALB | serum albumin |
ALDH1A2 | retinal dehydrogenase 2 |
ALDH1B1 | aldehyde dehydrogenase X, mitochondrial |
ALDH6A1 | methylmalonate-semialdehyde dehydrogenase (acylating), mitochondrial |
AP2B1 | AP-2 complex subunit beta |
AR | androgen receptor |
ARCN1 | coatomer subunit delta |
ARF1 | ADP-ribosylation factor 1 |
ASAH1 | acid ceramidase |
ATIC | bifunctional purine biosynthesis protein ATIC |
BPH | benign prostatic hyperplasia |
CA1 | carbonic anhydrase 1 |
CA2 | carbonic anhydrase 2 |
CAT | catalase |
CES1 | liver carboxylesterase 1 |
COL4A1 | collagen alpha-1(IV) chain |
COL6A3 | collagen alpha-3(VI) chain |
CORO1B | coronin-1B |
COX5B | cytochrome c oxidase subunit 5B, mitochondrial |
CRPC | castration-resistant prostate cancer |
CRYAB | alpha-crystallin B chain |
CSRP2 | cysteine and glycine-rich protein 2 |
DCXR | L-xylulose reductase |
DES | desmin |
DHRS7 | dehydrogenase/reductase SDR family member 7 |
ECI1 | enoyl-CoA delta isomerase 1, mitochondrial |
EEF1B2 | elongation factor 1-beta |
EPRS1 | bifunctional glutamate/proline–tRNA ligase |
ER | endoplasmic reticulum |
FBLN1 | fibulin-1 |
FDR | false discover rate |
FLNA | filamin-A |
FLNB | filamin-B |
GPX4 | phospholipid hydroperoxide glutathione peroxidase |
GRHPR | glyoxylate reductase/hydroxypyruvate reductase |
GS | Gleason score |
GSTP1 | glutathione S-transferase P |
HBB | haemoglobin subunit beta |
HCD | higher-energy collisional dissociation |
HEXB | beta-hexosaminidase subunit beta |
HIST1H2AH | histone H2A type 1-H |
HNRNPA3 | heterogeneous nuclear ribonucleoprotein A3 |
HPGD | 15-hydroxyprostaglandin dehydrogenase (NAD(+)) |
HSP90/HSP90AB1 | heat shock protein HSP 90-beta |
IDH2 | isocitrate dehydrogenase (NADP), mitochondrial |
IL-17 | interleukin 17 |
ILF3 | interleukin enhancer-binding factor 3 |
IR | interquartile range |
IRE1α | inositol requiring-enzyme 1 alpha |
Kegg | Kyoto encyclopedia of genes and genomes |
KRT18 | keratin, type I cytoskeletal 18 |
KRT8 | keratin, type II cytoskeletal 8 |
LAMA4 | laminin subunit alpha-4 |
LAMP1 | lysosome-associated membrane glycoprotein 1 |
LAMP2 | lysosome-associated membrane glycoprotein 2 |
LC-MS/MS | liquid chromatography coupled to tandem mass spectrometry |
LCN2 | neutrophil gelatinase-associated lipocalin |
MAPK6 | mitogen-activated protein kinase 6 |
mCRPC | metastatic castration-resistant prostate cancer |
MSigDB | Molecular Signatures Database |
MW | Mann Whitney test |
MYC | Myc proto-oncogene |
MYH11 | myosin-11 |
NANS | sialic acid synthase |
NDUFS1 | NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial |
NPC2 | NPC intracellular cholesterol transporter 2 |
P4HB | protein disulphide-isomerase |
PA2G4 | proliferation-associated protein 2G4 |
PCa | prostate cancer |
PCBP1 | poly(rC)-binding protein 1 |
PDLIM5 | PDZ and LIM domain protein 5 |
PGD | 6-phosphogluconate dehydrogenase, decarboxylating |
PRDX6 | peroxiredoxin-6 |
PSA | prostate specific antigen |
PSAP | prosaposin |
PSMB2 | proteasome subunit beta type-2 |
RACK1 | receptor of activated protein C kinase 1 |
RPN1 | dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit 1 |
RPS5 | ribosomal protein S5 |
S100A8 | protein S100-A8 |
S100A9 | protein S100-A9 |
SCARB2 | lysosome membrane protein 2 |
SDHA | succinate dehydrogenase (ubiquinone) flavoprotein subunit, mitochondrial |
SDS-PAGE | sodium dodecyl sulphate–polyacrylamide gel electrophoresis |
SEC61A1 | protein transport protein Sec61 alpha isoform 1 |
SELENBP1 | methanethiol oxidase |
SLC25A6 | ADP/ATP translocase 3 |
SNRPD3 | small nuclear ribonucleoprotein Sm D3 |
SORD | sorbitol dehydrogenase |
TAGLN | transgelin |
TCA cycle | tricarboxylic acid cycle |
UBE2N | ubiquitin-conjugating enzyme E2 N |
UGGT1 | UDP-glucose:glycoprotein glucosyltransferase 1 |
XBP1 | X-box-binding protein 1 |
YWHAB | 14-3-3 protein beta/alpha |
References
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2018; Available online: https://gco.Iarc.Fr/today (accessed on 14 July 2020).
- Ploussard, G.; Epstein, J.I.; Montironi, R.; Carroll, P.R.; Wirth, M.; Grimm, M.O.; Bjartell, A.S.; Montorsi, F.; Freedland, S.J.; Erbersdobler, A.; et al. The contemporary concept of significant versus insignificant prostate cancer. Eur. Urol. 2011, 60, 291–303. [Google Scholar] [CrossRef] [Green Version]
- Lichtensztajn, D.Y.; Leppert, J.T.; Brooks, J.D.; Shah, S.A.; Sieh, W.; Chung, B.I.; Gomez, S.L.; Cheng, I. Undertreatment of high-risk localized prostate cancer in the california latino population. J. Natl. Compr. Cancer Netw. 2018, 16, 1353–1360. [Google Scholar] [CrossRef] [Green Version]
- Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. Seer Cancer Statistics Review, 1975–2017; National Cancer Institute: Bethesda, MD, USA, 2020.
- Moreira, D.M.; Howard, L.E.; Sourbeer, K.N.; Amarasekara, H.S.; Chow, L.C.; Cockrell, D.C.; Pratson, C.L.; Hanyok, B.T.; Aronson, W.J.; Kane, C.J.; et al. Predicting time from metastasis to overall survival in castration-resistant prostate cancer: Results from search. Clin. Genitourin. Cancer 2017, 15, 60–66.e62. [Google Scholar] [CrossRef] [Green Version]
- The Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate cancer. Cell 2015, 163, 1011–1025. [Google Scholar]
- Arora, K.; Barbieri, C.E. Molecular subtypes of prostate cancer. Curr. Oncol. Rep. 2018, 20, 58. [Google Scholar] [CrossRef]
- Kaffenberger, S.D.; Barbieri, C.E. Molecular subtyping of prostate cancer. Curr. Opin. Urol. 2016, 26, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Marshall, C.H.; Antonarakis, E.S. Emerging treatments for metastatic castration-resistant prostate cancer: Immunotherapy, parp inhibitors, and psma-targeted approaches. Cancer Treat. Res. Commun. 2020, 23, 100164. [Google Scholar] [CrossRef]
- Food and Drug Administration, Drugs@FDA: FDA Approved Drug Products, (n.D.). Available online: https://www.Accessdata.Fda.Gov/scripts/cder/daf/ (accessed on 29 July 2020).
- Frantzi, M.; Latosinska, A.; Kontostathi, G.; Mischak, H. Clinical proteomics: Closing the gap from discovery to implementation. Proteomics 2018, 18, e1700463. [Google Scholar] [CrossRef] [Green Version]
- Makridakis, M.; Vlahou, A. Gelc-ms: A sample preparation method for proteomics analysis of minimal amount of tissue. Methods Mol. Biol. 2018, 1788, 165–175. [Google Scholar]
- Mokou, M.; Klein, J.; Makridakis, M.; Bitsika, V.; Bascands, J.L.; Saulnier-Blache, J.S.; Mullen, W.; Sacherer, M.; Zoidakis, J.; Pieske, B.; et al. Proteomics based identification of kdm5 histone demethylases associated with cardiovascular disease. EBioMedicine 2019, 41, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Schanstra, J.P.; Luong, T.T.; Makridakis, M.; Van Linthout, S.; Lygirou, V.; Latosinska, A.; Alesutan, I.; Boehme, B.; Schelski, N.; Von Lewinski, D.; et al. Systems biology identifies cytosolic pla2 as a target in vascular calcification treatment. JCI Insight 2019, 4, e125638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lygirou, V.; Latosinska, A.; Makridakis, M.; Mullen, W.; Delles, C.; Schanstra, J.P.; Zoidakis, J.; Pieske, B.; Mischak, H.; Vlahou, A. Plasma proteomic analysis reveals altered protein abundances in cardiovascular disease. J. Transl. Med. 2018, 16, 104. [Google Scholar] [CrossRef]
- Jager, M.; Jennissen, H.P.; Haversath, M.; Busch, A.; Grupp, T.; Sowislok, A.; Herten, M. Intrasurgical protein layer on titanium arthroplasty explants: From the big twelve to the implant proteome. Proteomics Clin. Appl. 2019, 13, e1800168. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun. 2019, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Kanehisa, M.; Goto, S. Kegg: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000, 28, 27–30. [Google Scholar] [CrossRef]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. String v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [Green Version]
- Mi, H.; Muruganujan, A.; Ebert, D.; Huang, X.; Thomas, P.D. Panther version 14: More genomes, a new panther go-slim and improvements in enrichment analysis tools. Nucleic Acids Res. 2019, 47, D419–D426. [Google Scholar] [CrossRef]
- You, S.; Knudsen, B.S.; Erho, N.; Alshalalfa, M.; Takhar, M.; Al-Deen Ashab, H.; Davicioni, E.; Karnes, R.J.; Klein, E.A.; Den, R.B.; et al. Integrated classification of prostate cancer reveals a novel luminal subtype with poor outcome. Cancer Res. 2016, 76, 4948–4958. [Google Scholar] [CrossRef] [Green Version]
- Ward, P.S.; Thompson, C.B. Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell 2012, 21, 297–308. [Google Scholar] [CrossRef] [Green Version]
- Eidelman, E.; Twum-Ampofo, J.; Ansari, J.; Siddiqui, M.M. The metabolic phenotype of prostate cancer. Front. Oncol. 2017, 7, 131. [Google Scholar] [CrossRef]
- Giunchi, F.; Fiorentino, M.; Loda, M. The metabolic landscape of prostate cancer. Eur. Urol. Oncol. 2019, 2, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Bader, D.A.; McGuire, S.E. Tumour metabolism and its unique properties in prostate adenocarcinoma. Nat. Rev. Urol. 2020, 17, 214–231. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y. Fatty acid oxidation is a dominant bioenergetic pathway in prostate cancer. Prostate Cancer Prostatic Dis. 2006, 9, 230–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Daniels, G.; Lee, P.; Monaco, M.E. Lipid metabolism in prostate cancer. Am. J. Clin. Exp. Urol. 2014, 2, 111–120. [Google Scholar] [PubMed]
- Schopf, B.; Weissensteiner, H.; Schafer, G.; Fazzini, F.; Charoentong, P.; Naschberger, A.; Rupp, B.; Fendt, L.; Bukur, V.; Giese, I.; et al. Oxphos remodeling in high-grade prostate cancer involves mtdna mutations and increased succinate oxidation. Nat. Commun. 2020, 11, 1487. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Liu, S.; Ge, D.; Zhang, Q.; Xue, Y.; Xiong, Z.; Abdel-Mageed, A.B.; Myers, L.; Hill, S.M.; Rowan, B.G.; et al. Interleukin-17 promotes formation and growth of prostate adenocarcinoma in mouse models. Cancer Res. 2012, 72, 2589–2599. [Google Scholar] [CrossRef] [Green Version]
- Erzurumlu, Y.; Ballar, P. Androgen mediated regulation of endoplasmic reticulum-associated degradation and its effects on prostate cancer. Sci. Rep. 2017, 7, 40719. [Google Scholar] [CrossRef] [Green Version]
- Storm, M.; Sheng, X.; Arnoldussen, Y.J.; Saatcioglu, F. Prostate cancer and the unfolded protein response. Oncotarget 2016, 7, 54051–54066. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Hooker, E.; Yu, E.J.; Cunha, G.R.; Liao, L.; Xu, J.; Earl, A.; Wu, H.; Gonzalgo, M.L.; Sun, Z. Androgen signaling is essential for development of prostate cancer initiated from prostatic basal cells. Oncogene 2019, 38, 2337–2350. [Google Scholar] [CrossRef]
- Morgan, T.M.; Koreckij, T.D.; Corey, E. Targeted therapy for advanced prostate cancer: Inhibition of the pi3k/akt/mtor pathway. Curr. Cancer Drug Targets 2009, 9, 237–249. [Google Scholar] [CrossRef] [Green Version]
- Rebello, R.J.; Pearson, R.B.; Hannan, R.D.; Furic, L. Therapeutic approaches targeting myc-driven prostate cancer. Genes 2017, 8, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latosinska, A.; Makridakis, M.; Frantzi, M.; Borras, D.M.; Janssen, B.; Mullen, W.; Zoidakis, J.; Merseburger, A.S.; Jankowski, V.; Mischak, H.; et al. Integrative analysis of extracellular and intracellular bladder cancer cell line proteome with transcriptome: Improving coverage and validity of -omics findings. Sci. Rep. 2016, 6, 25619. [Google Scholar] [CrossRef] [PubMed]
- Tomlins, S.A.; Mehra, R.; Rhodes, D.R.; Cao, X.; Wang, L.; Dhanasekaran, S.M.; Kalyana-Sundaram, S.; Wei, J.T.; Rubin, M.A.; Pienta, K.J.; et al. Integrative molecular concept modeling of prostate cancer progression. Nat. Genet. 2007, 39, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Koh, C.M.; Bieberich, C.J.; Dang, C.V.; Nelson, W.G.; Yegnasubramanian, S.; De Marzo, A.M. Myc and prostate cancer. Genes Cancer 2010, 1, 617–628. [Google Scholar] [CrossRef] [Green Version]
- Dang, C.V. Myc, metabolism, cell growth, and tumorigenesis. Cold Spring Harb. Perspect. Med. 2013, 3, a014217. [Google Scholar] [CrossRef]
- Camarda, R.; Williams, J.; Goga, A. In Vivo reprogramming of cancer metabolism by myc. Front. Cell Dev. Biol. 2017, 5, 35. [Google Scholar] [CrossRef] [Green Version]
- Bai, S.; Cao, S.; Jin, L.; Kobelski, M.; Schouest, B.; Wang, X.; Ungerleider, N.; Baddoo, M.; Zhang, W.; Corey, E.; et al. A positive role of c-myc in regulating androgen receptor and its splice variants in prostate cancer. Oncogene 2019, 38, 4977–4989. [Google Scholar] [CrossRef]
- Shen, F.; Yan, C.; Liu, M.; Feng, Y.; Chen, Y. Rack1 promotes prostate cancer cell proliferation, invasion and metastasis. Mol. Med. Rep. 2013, 8, 999–1004. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.; Li, J.; Farah, E.; Sarkar, S.; Ahmad, N.; Gupta, S.; Larner, J.; Liu, X. Cotargeting hsp90 and its client proteins for treatment of prostate cancer. Mol. Cancer Ther. 2016, 15, 2107–2118. [Google Scholar] [CrossRef] [Green Version]
- Gannon, P.O.; Koumakpayi, I.H.; Le Page, C.; Karakiewicz, P.I.; Mes-Masson, A.M.; Saad, F. Ebp1 expression in benign and malignant prostate. Cancer Cell Int. 2008, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Linxweiler, M.; Schick, B.; Zimmermann, R. Let’s talk about secs: Sec61, sec62 and sec63 in signal transduction, oncology and personalized medicine. Signal Transduct. Target. Ther. 2017, 2, 17002. [Google Scholar] [CrossRef] [PubMed]
- Mimura, N.; Fulciniti, M.; Gorgun, G.; Tai, Y.T.; Cirstea, D.; Santo, L.; Hu, Y.; Fabre, C.; Minami, J.; Ohguchi, H.; et al. Blockade of xbp1 splicing by inhibition of ire1alpha is a promising therapeutic option in multiple myeloma. Blood 2012, 119, 5772–5781. [Google Scholar] [CrossRef] [PubMed]
- Greiner, M.; Kreutzer, B.; Jung, V.; Grobholz, R.; Hasenfus, A.; Stohr, R.F.; Tornillo, L.; Dudek, J.; Stockle, M.; Unteregger, G.; et al. Silencing of the sec62 gene inhibits migratory and invasive potential of various tumor cells. Int. J. Cancer 2011, 128, 2284–2295. [Google Scholar] [CrossRef] [PubMed]
- Coleman, I.M.; Kiefer, J.A.; Brown, L.G.; Pitts, T.E.; Nelson, P.S.; Brubaker, K.D.; Vessella, R.L.; Corey, E. Inhibition of androgen-independent prostate cancer by estrogenic compounds is associated with increased expression of immune-related genes. Neoplasia 2006, 8, 862–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Sankar, S.; Neamati, N. Protein disulfide isomerase: A promising target for cancer therapy. Drug Discov. Today 2014, 19, 222–240. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Li, N.; Sun, C.; Jin, Y.; Sheng, X. Myc and the unfolded protein response in cancer: Synthetic lethal partners in crime? EMBO Mol. Med. 2020, 12, e11845. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Nenseth, H.Z.; Qu, S.; Kuzu, O.F.; Frahnow, T.; Simon, L.; Greene, S.; Zeng, Q.; Fazli, L.; Rennie, P.S.; et al. Ire1alpha-xbp1s pathway promotes prostate cancer by activating c-myc signaling. Nat. Commun. 2019, 10, 323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, T.; Lv, X.; Guo, X.; Ruan, B.; Liu, D.; Ding, R.; Gao, Y.; Ding, J.; Dou, K.; Chen, Y. Rack1 modulates apoptosis induced by sorafenib in hcc cells by interfering with the ire1/xbp1 axis. Oncol. Rep. 2015, 33, 3006–3014. [Google Scholar] [CrossRef] [PubMed]
- Valcarcel-Jimenez, L.; Gaude, E.; Torrano, V.; Frezza, C.; Carracedo, A. Mitochondrial metabolism: Yin and yang for tumor progression. Trends Endocrinol. Metab. 2017, 28, 748–757. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.Y.; Kang, S.; Kim, D.S.; Na, H.J.; Kim, Y.J.; Choi, Y.D.; Cho, N.H. Hsp27, aldh6a1 and prohibitin act as a trio-biomarker to predict survival in late metastatic prostate cancer. Anticancer Res. 2018, 38, 6551–6560. [Google Scholar] [CrossRef]
- Morrish, F.; Hockenbery, D. Myc and mitochondrial biogenesis. Cold Spring Harb. Perspect. Med. 2014, 4, a014225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Kegg Pathway | FDR | Coverage (%) | Associated Proteins |
---|---|---|---|
TCA cycle | 8.10 × 10−3 | 13.33 | ACLY, ACO2, IDH2, SDHA |
Metabolic pathways | 8.10 × 10−3 | 1.84 | ACACA, ACLY, ACO2, AKR1B1, ALDH1A2, ALDH1B1, ALDH6A1, ASAH1, ATIC, CES1, COX5B, DCXR, EPRS1, GRHPR, HEXB, IDH2, NANS, NDUFS1, PGD, PRDX6, RPN1, SDHA, SORD |
Lysosome | 8.10 × 10−3 | 5.69 | ASAH1, HEXB, LAMP1, LAMP2, NPC2, PSAP, SCARB2 |
Carbon metabolism | 1.17 × 10−2 | 5.17 | ACO2, ALDH6A1, CAT, IDH2, PGD, SDHA |
Glutathione metabolism | 2.20 × 10−2 | 8.00 | GPX4, GSTP1, IDH2, PGD |
IL-17 signalling pathway | 2.20 × 10−2 | 5.43 | HSP90AB1, LCN2, MAPK6, S100A8, S100A9 |
Glyoxylate and dicarboxylate metabolism | 3.47 × 10−2 | 10.71 | ACO2, CAT, GRHPR |
Protein processing in ER | 3.47 × 10−2 | 3.73 | CRYAB, HSP90AB1, P4HB, RPN1, SEC61A1, UGGT1 |
Pentose and glucuronate interconversions | 4.65 × 10−2 | 8.82 | AKR1B1, DCXR, SORD |
Hallmark | p-Value | Coverage (%) | Associated Proteins |
---|---|---|---|
MYC targets v1 | 1.64 × 10−5 | 5.00 | EEF1B2, EPRS1, HSP90AB1, PA2G4, PCBP1, PSMB2, RPS5, SNRPD3, RACK1, HNRNPA3 |
Oxidative phosphorylation | 5.15 × 10−5 | 4.50 | ACO2, SLC25A6, COX5B, ECI1, GPX4, IDH2, ALDH6A1, NDUFS1, SDHA |
Xenobiotic metabolism | 5.15 × 10−5 | 4.50 | ACO2, CA2, CAT, CES1, FBLN1, PGD, PDLIM5, DCXR, DHRS7 |
Fatty acid metabolism | 5.51 × 10−4 | 4.43 | ACO2, CA2, ECI1, HPGD, SDHA, GRHPR, PRDX6 |
Adipogenesis | 1.92 × 10−3 | 3.50 | ACLY, ACO2, CAT, COL4A1, GPX4, LAMA4, DHRS7, PRDX6 |
Protein secretion | 2.22 × 10−3 | 5.21 | AP2B1, ARCN1, ARF1, KRT18, LAMP2 |
Androgen response | 2.41 × 10−3 | 4.95 | HPGD, KRT8, PA2G4, SORD, PDLIM5 |
Oestrogen response late | 6.88 × 10−3 | 3.00 | CA2, FLNB, IDH2, S100A9, SORD, DCXR |
Heme metabolism | 6.88 × 10−3 | 3.00 | CA1, CA2, CAT, LAMP2, ALDH6A1, SELENBP1 |
PI3K/AKT/mTOR signalling | 1.60 × 10−2 | 3.81 | ACACA, ARF1, UBE2N, YWHAB |
Protein Name | Symbol | Proteomics | Transcriptomics | Pathway/Hallmark | |||||
---|---|---|---|---|---|---|---|---|---|
Avg. Abundance PCa (±SD) | Avg. Abundance BPH (±SD) | Fold Change (PCa/BPH) | p-Value (MW) | Rho | p-Value (Spearman) | p-Value (ANOVA) | |||
Cytochrome c oxidase subunit 5B, mitochondrial | COX5B | 35.57 (±46.07) | 0.00 (±0.00) | Only in PCa | 2.38 × 10−2 | 0.71 | 1.51 × 10−3 | 0.373 | Metabolic pathways, Oxidative phosphorylation |
Elongation factor 1-beta | EEF1B2 | 49.80 (±54.02) | 0.00 (±0.00) | Only in PCa | 5.62 × 10−3 | 0.52 | 3.12 × 10−2 | 0.173 | MYC targets v1 |
Bifunctional glutamate/proline–tRNA ligase | EPRS1 | 113.27 (±111.41) | 2.55 (±5.71) | 44.39 | 1.08 × 10−2 | 0.56 | 1.88 × 10−2 | <0.001 | Metabolic pathways, MYC targets v1 |
Enoyl-CoA delta isomerase 1, mitochondrial | ECI1 | 83.71 (±144.87) | 2.43 (±5.43) | 34.46 | 4.25 × 10−2 | 0.55 | 2.08 × 10−2 | <0.001 | Oxidative phosphorylation, Fatty acid metabolism |
PDZ and LIM domain protein 5 | PDLIM5 | 49.56 (±95.10) | 1.76 (±3.94) | 28.15 | 1.60 × 10−2 | 0.51 | 3.79 × 10−2 | <0.001 | Xenobiotic metabolism, Androgen response |
Methylmalonate-semialdehyde dehydrogenase (acylating), mitochondrial | ALDH6A1 | 320.75 (±466.95) | 13.95 (±31.19) | 22.99 | 9.02 × 10−3 | 0.56 | 2.01 × 10−2 | <0.001 | Metabolic pathways, Carbon metabolism, Oxidative phosphorylation, Heme metabolism |
Protein transport protein Sec61 subunit alpha isoform 1 | SEC61A1 | 30.88 (±32.34) | 1.86 (±4.16) | 16.59 | 2.46 × 10−2 | 0.75 | 5.71 × 10−4 | <0.001 | Protein processing in ER |
Coatomer subunit delta | ARCN1 | 101.90 (±101.48) | 10.27 (±10.20) | 9.92 | 1.50 × 10−2 | 0.57 | 1.62 × 10−2 | 0.302 | Protein secretion |
Proliferation-associated protein 2G4 | PA2G4 | 100.95 (±102.47) | 17.45 (±24.51) | 5.79 | 4.89 × 10−2 | 0.64 | 5.43 × 10−3 | <0.001 | MYC targets v1, Androgen response |
Lysosome-associated membrane glycoprotein 1 | LAMP1 | 240.92 (±193.22) | 42.06 (±53.65) | 5.73 | 2.29 × 10−2 | 0.58 | 1.43 × 10−2 | 0.036 | Lysosome |
Receptor of activated protein C kinase 1 | RACK1 | 337.82 (±237.92) | 65.47(±34.60) | 5.16 | 6.10 × 10−3 | 0.67 | 3.38 × 10−3 | <0.001 | MYC targets v1 |
Glyoxylate reductase/hydroxypyruvate reductase | GRHPR | 96.02 (±81.68) | 22.89 (±16.11) | 4.19 | 9.73 × 10−3 | 0.55 | 2.20 × 10−2 | 0.010 | Metabolic pathways, Glyoxylate and dicarboxylate metabolism, Fatty acid metabolism |
Protein disulphide-isomerase | P4HB | 849.09 (±736.21) | 205.58 (±45.05) | 4.13 | 2.83 × 10−2 | 0.62 | 8.49 × 10−3 | <0.001 | Protein processing in ER |
ADP-ribosylation factor 1 | ARF1 | 274.51 (±227.49) | 81.88 (±49.35) | 3.35 | 3.44 × 10−2 | 0.57 | 1.78 × 10−2 | <0.001 | Protein secretion, PI3K/AKT/mTOR signalling |
Dolichyl-diphosphooligosaccharide–protein glycosyltransferase subunit 1 | RPN1 | 154.05 (±107.39) | 50.38 (±29.21) | 3.06 | 3.44 × 10−2 | 0.50 | 4.17 × 10−2 | 0.005 | Metabolic pathways, Protein processing in ER |
ADP/ATP translocase 3 | SLC25A6 | 944.05 (±505.41) | 359.42 (±146.11) | 2.63 | 1.88 × 10−2 | 0.75 | 4.71 × 10−4 | <0.001 | Oxidative phosphorylation |
Heat shock protein HSP 90-beta | HSP90AB1 | 1251.54 (±791.26) | 482.75 (±165.56) | 2.59 | 1.52 × 10−2 | 0.75 | 5.42 × 10−4 | 0.001 | IL-17 signalling pathway, Protein processing in ER, MYC targets v1 |
Isocitrate dehydrogenase (NADP), mitochondrial | IDH2 | 546.27 (±279.70) | 243.42 (±104.52) | 2.24 | 2.83 × 10−2 | 0.57 | 1.72 × 10−2 | 0.017 | TCA cycle, Metabolic pathways, Carbon metabolism, Glutathione metabolism, Oxidative phosphorylation, Oestrogen response late |
14-3-3 protein beta/alpha | YWHAB | 684.20 (±305.98) | 324.49 (±159.83) | 2.11 | 9.73 × 10−3 | 0.85 | 1.93 × 10−5 | 0.218 | PI3K/AKT/mTOR signalling |
Ubiquitin-conjugating enzyme E2 N | UBE2N | 314.95 (±140.93) | 159.39 (±58.37) | 1.98 | 1.88 × 10−2 | 0.63 | 7.16 × 10−3 | <0.001 | PI3K/AKT/mTOR signalling |
15-hydroxyprostaglandin dehydrogenase (NAD(+)) | HPGD | 37.40 (±37.39) | 84.41 (±33.97) | 0.44 | 3.16 × 10−2 | −0.74 | 6.69 × 10−4 | 0.016 | Fatty acid metabolism, Androgen response |
Acetyl-CoA carboxylase 1 | ACACA | 9.93 (±20.78) | 29.28 (±23.17) | 0.34 | 4.09 × 10−2 | 0.60 | 1.16 × 10−2 | <0.001 | Metabolic pathways, PI3K/AKT/mTOR signalling |
Aldehyde dehydrogenase X, mitochondrial | ALDH1B1 | 11.64 (±11.27) | 40.54 (±37.31) | 0.29 | 1.81 × 10−2 | −0.49 | 4.38 × 10−2 | <0.001 | Metabolic pathways |
Aldo-keto reductase family 1 member B1 | AKR1B1 | 100.00 (±138.86) | 377.89 (±231.11) | 0.26 | 6.09 × 10−3 | 0.65 | 4.61 × 10−3 | <0.001 | Metabolic pathways, Pentose and glucuronate interconversions |
Carbonic anhydrase 2 | CA2 | 23.15 (±39.16) | 191.60 (±176.21) | 0.12 | 3.39 × 10−3 | 0.78 | 2.32 × 10−4 | <0.001 | Xenobiotic metabolism, Fatty acid metabolism, Oestrogen response late, Heme metabolism |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Latosinska, A.; Davalieva, K.; Makridakis, M.; Mullen, W.; Schanstra, J.P.; Vlahou, A.; Mischak, H.; Frantzi, M. Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation. Diagnostics 2020, 10, 655. https://doi.org/10.3390/diagnostics10090655
Latosinska A, Davalieva K, Makridakis M, Mullen W, Schanstra JP, Vlahou A, Mischak H, Frantzi M. Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation. Diagnostics. 2020; 10(9):655. https://doi.org/10.3390/diagnostics10090655
Chicago/Turabian StyleLatosinska, Agnieszka, Katarina Davalieva, Manousos Makridakis, William Mullen, Joost P. Schanstra, Antonia Vlahou, Harald Mischak, and Maria Frantzi. 2020. "Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation" Diagnostics 10, no. 9: 655. https://doi.org/10.3390/diagnostics10090655
APA StyleLatosinska, A., Davalieva, K., Makridakis, M., Mullen, W., Schanstra, J. P., Vlahou, A., Mischak, H., & Frantzi, M. (2020). Molecular Changes in Tissue Proteome during Prostate Cancer Development: Proof-of-Principle Investigation. Diagnostics, 10(9), 655. https://doi.org/10.3390/diagnostics10090655