Serum Biomarkers for the Diagnosis of Glaucoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Patients
2.2. Blood Samples
2.3. Enzyme-Linked Immunosorbent Assay
2.4. Statistical Analysis
3. Results
3.1. Comparison of Control Group and Patients with Glaucoma
3.2. Comparison of NTG and HTG
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kingman, S. Glaucoma is second leading cause of blindness globally. Bull. World Health Organ. 2004, 82, 887–888. [Google Scholar] [CrossRef]
- Medeiros, F.A.; Alencar, L.M.; Zangwill, L.M.; Bowd, C.; Sample, P.A.; Weinreb, R.N. Prediction of functional loss in glaucoma from progressive optic disc damage. Arch. Ophthalmol. 2009, 127, 1250–1256. [Google Scholar] [CrossRef] [Green Version]
- Susanna, R., Jr.; De Moraes, C.G.; Cioffi, G.A.; Ritch, R. Why Do People (Still) Go Blind from Glaucoma? Transl. Vis. Sci. Technol. 2015, 4, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastropasqua, R.; Fasanella, V.; Agnifili, L.; Fresina, M.; Di Staso, S.; Di Gregorio, A.; Marchini, G.; Ciancaglini, M. Advance in the pathogenesis and treatment of normal-tension glaucoma. Prog. Brain Res. 2015, 221, 213–232. [Google Scholar] [CrossRef] [PubMed]
- Killer, H.E.; Pircher, A. Normal tension glaucoma: Review of current understanding and mechanisms of the pathogenesis. Eye 2018, 32, 924–930. [Google Scholar] [CrossRef] [PubMed]
- Hantzschel, J.; Terai, N.; Sorgenfrei, F.; Haustein, M.; Pillunat, K.; Pillunat, L.E. Morphological and functional differences between normal-tension and high-tension glaucoma. Acta Ophthalmol. 2013, 91, e386–e391. [Google Scholar] [CrossRef]
- Pruzan, N.L.; Myers, J.S. Phenotypic differences in normal vs high tension glaucoma. J. Neuroophthalmol. 2015, 35 (Suppl. 1), S4–S7. [Google Scholar] [CrossRef]
- Li, L.; Bian, A.; Cheng, G.; Zhou, Q. Posterior displacement of the lamina cribrosa in normal-tension and high-tension glaucoma. Acta Ophthalmol. 2016, 94, e492–e500. [Google Scholar] [CrossRef]
- Mursch-Edlmayr, A.S.; Waser, K.; Podkowinski, D.; Bolz, M. Differences in swept-source OCT angiography of the macular capillary network in high tension and normal tension glaucoma. Curr. Eye Res. 2020, 45, 1168–1172. [Google Scholar] [CrossRef]
- Thomas, R.; Parikh, R.S. How to assess a patient for glaucoma. Community Eye Health 2006, 19, 36–37. [Google Scholar]
- Matlach, J.; Bender, S.; Konig, J.; Binder, H.; Pfeiffer, N.; Hoffmann, E.M. Investigation of intraocular pressure fluctuation as a risk factor of glaucoma progression. Clin. Ophthalmol. 2019, 13, 9–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.; Sample, P.A.; Zangwill, L.M.; Schuman, J.S. Diagnostic tools for glaucoma detection and management. Surv. Ophthalmol. 2008, 53 (Suppl. 1), S17–S32. [Google Scholar] [CrossRef] [Green Version]
- Boehm, N.; Wolters, D.; Thiel, U.; Lossbrand, U.; Wiegel, N.; Pfeiffer, N.; Grus, F.H. New insights into autoantibody profiles from immune privileged sites in the eye: A glaucoma study. Brain Behav. Immun. 2012, 26, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Gramlich, O.W.; Bell, K.; Hohenstein-Blaul, N.V.; Wilding, C.; Beck, S.; Pfeiffer, N.; Grus, F.H. Autoimmune biomarkers in glaucoma patients. Curr. Opin. Pharmacol. 2013, 13, 90–97. [Google Scholar] [CrossRef] [PubMed]
- Wax, M.B.; Tezel, G.; Saito, I.; Gupta, R.S.; Harley, J.B.; Li, Z.; Romano, C. Anti-Ro/SS-A positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. Am. J. Ophthalmol. 1998, 125, 145–157. [Google Scholar] [CrossRef]
- Grus, F.H.; Joachim, S.C.; Bruns, K.; Lackner, K.J.; Pfeiffer, N.; Wax, M.B. Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States. Investig. Ophthalmol. Vis. Sci. 2006, 47, 968–976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, H.K.; Kee, C. Population-based glaucoma prevalence studies in Asians. Surv. Ophthalmol. 2014, 59, 434–447. [Google Scholar] [CrossRef]
- Kim, C.S.; Seong, G.J.; Lee, N.H.; Song, K.C.; Namil Study Group, K.G.S. Prevalence of primary open-angle glaucoma in central South Korea the Namil study. Ophthalmology 2011, 118, 1024–1030. [Google Scholar] [CrossRef]
- Kee, C.; Son, S.; Ahn, B.H. The relationship between gelatinase A activity in aqueous humor and glaucoma. J. Glaucoma 1999, 8, 51–55. [Google Scholar] [CrossRef]
- Perrin, P. Prostatic adenoma: Drugs or surgery? Rev. Prat. 1990, 40, 1968–1969. [Google Scholar] [PubMed]
- Park, H.L.; Kim, S.W.; Kim, J.H.; Park, C.K. Increased levels of synaptic proteins involved in synaptic plasticity after chronic intraocular pressure elevation and modulation by brain-derived neurotrophic factor in a glaucoma animal model. Dis. Model. Mech. 2019, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gye, H.J.; Kim, J.M.; Yoo, C.; Shim, S.H.; Won, Y.S.; Sung, K.C.; Lee, M.Y.; Park, K.H. Relationship between high serum ferritin level and glaucoma in a South Korean population: The Kangbuk Samsung health study. Br. J. Ophthalmol. 2016, 100, 1703–1707. [Google Scholar] [CrossRef] [PubMed]
- European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition—Chapter 3: Treatment principles and options Supported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 3 Treatment principles and options. Br. J. Ophthalmol. 2017, 101, 130–195. [CrossRef] [PubMed] [Green Version]
- Brusini, P.; Zeppieri, M.; Tosoni, C.; Parisi, L.; Salvetat, M.L. Optic disc damage staging system. J. Glaucoma 2010, 19, 442–449. [Google Scholar] [CrossRef]
- Chandra, A.; Bandyopadhyay, A.K.; Bhaduri, G. A comparative study of two methods of optic disc evaluation in patients of glaucoma. Oman J. Ophthalmol. 2013, 6, 103–107. [Google Scholar] [CrossRef]
- Bell, K.; Gramlich, O.W.; Hohenstein-Blaul, N.V.; Beck, S.; Funke, S.; Wilding, C.; Pfeiffer, N.; Grus, F.H. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog. Retin. Eye Res. 2013, 36, 199–216. [Google Scholar] [CrossRef]
- Joachim, S.C.; Reichelt, J.; Berneiser, S.; Pfeiffer, N.; Grus, F.H. Sera of glaucoma patients show autoantibodies against myelin basic protein and complex autoantibody profiles against human optic nerve antigens. Graefes Arch. Clin. Exp. Ophthalmol. 2008, 246, 573–580. [Google Scholar] [CrossRef]
- Wasik, N.; Sokol, B.; Holysz, M.; Manko, W.; Juszkat, R.; Jagodzinski, P.P.; Jankowski, R. Serum myelin basic protein as a marker of brain injury in aneurysmal subarachnoid haemorrhage. Acta Neurochir. 2020, 162, 545–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A.A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; et al. Search for magnetic monopoles in sqrt[s]=7 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett. 2012, 109, 261803. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Li, Y.; Hou, X.; Zhang, N.; Ma, J.; Ding, F.; Li, F.; Miao, Z.; Zhang, Y.; Qi, Q.; et al. HSP60 is involved in the neuroprotective effects of naloxone. Mol. Med. Rep. 2014, 10, 2172–2176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehnardt, S.; Schott, E.; Trimbuch, T.; Laubisch, D.; Krueger, C.; Wulczyn, G.; Nitsch, R.; Weber, J.R. A vicious cycle involving release of heat shock protein 60 from injured cells and activation of toll-like receptor 4 mediates neurodegeneration in the CNS. J. Neurosci. 2008, 28, 2320–2331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Migozzi, J.; Payan, J.; Moisan, E.; Pini, P. The balanced hook. Rev. Odontostomatol. 1975, 4, 389–392. [Google Scholar]
- Cappello, F.; Conway de Macario, E.; Marino Gammazza, A.; Bonaventura, G.; Carini, F.; Czarnecka, A.M.; Farina, F.; Zummo, G.; Macario, A.J. Hsp60 and human aging: Les liaisons dangereuses. Front. Biosci. (Landmark Ed.) 2013, 18, 626–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tezel, G.; Seigel, G.M.; Wax, M.B. Autoantibodies to small heat shock proteins in glaucoma. Investig. Ophthalmol. Vis. Sci. 1998, 39, 2277–2287. [Google Scholar]
- Sreeja, J.S.; John, R.; Dharmapal, D.; Nellikka, R.K.; Sengupta, S. A fresh look at the structure, regulation and functions of fodrin. Mol. Cell. Biol. 2020. [Google Scholar] [CrossRef]
- Reale, M.; D’Angelo, C.; Costantini, E.; Laus, M.; Moretti, A.; Croce, A. MicroRNA in Sjogren’s Syndrome: Their Potential Roles in Pathogenesis and Diagnosis. J. Immunol. Res. 2018, 2018, 7510174. [Google Scholar] [CrossRef] [Green Version]
- Chen, Q.; Li, X.; He, W.; Zhang, H.; Gao, A.; Cheng, Y.; Lei, J.; Li, S.; Zeng, L. The epitope study of alpha-fodrin autoantibody in primary Sjogren’s syndrome. Clin. Exp. Immunol. 2007, 149, 497–503. [Google Scholar] [CrossRef]
- Tezel, G.; Wax, M.B. Inhibition of caspase activity in retinal cell apoptosis induced by various stimuli in vitro. Investig. Ophthalmol. Vis. Sci. 1999, 40, 2660–2667. [Google Scholar]
- Franceschini, F.; Cavazzana, I. Anti-Ro/SSA and La/SSB antibodies. Autoimmunity 2005, 38, 55–63. [Google Scholar] [CrossRef]
- Scofield, A.K.; Radfar, L.; Ice, J.A.; Vista, E.; Anaya, J.M.; Houston, G.; Lewis, D.; Stone, D.U.; Chodosh, J.; Hefner, K.; et al. Relation of sensory peripheral neuropathy in Sjogren syndrome to anti-Ro/SSA. J. Clin. Rheumatol. 2012, 18, 290–293. [Google Scholar] [CrossRef] [Green Version]
- Megevand, P.; Chizzolini, C.; Chofflon, M.; Roux-Lombard, P.; Lalive, P.H.; Picard, F. Cerebrospinal fluid anti-SSA autoantibodies in primary Sjogren’s syndrome with central nervous system involvement. Eur. Neurol. 2007, 57, 166–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, J.H.; Hwang, J.; Min, J.H.; Kim, B.J.; Kang, E.S.; Lee, K.H. Presence of anti-Ro/SSA antibody may be associated with anti-aquaporin-4 antibody positivity in neuromyelitis optica spectrum disorder. J. Neurol. Sci. 2015, 348, 132–135. [Google Scholar] [CrossRef] [PubMed]
- Grus, F.H.; Joachim, S.C.; Hoffmann, E.M.; Pfeiffer, N. Complex autoantibody repertoires in patients with glaucoma. Mol. Vis. 2004, 10, 132–137. [Google Scholar] [PubMed]
Variables | Control (n = 17) | Glaucoma (n = 21) | p-Value between Glaucoma and Control | p-Value between NTG and HTG | ||
---|---|---|---|---|---|---|
Total (n = 21) | NTG (n = 14) | HTG (n = 7) | ||||
Sex (Female: Male) | 9:8 | 15:6 | 9:5 | 6:1 | 0.209 * | 0.314 |
Age (years) | 41.18 ± 16.12 | 48.86 ± 11.93 | 52.00 ± 10.23 | 42.57 ± 13.37 | 0.121 | 0.110 |
IOP in left eye | 14.73 ± 2.49 | 18.38 ± 6.23 | 16.21 ± 3.04 | 23.36 ± 5.92 | 0.031 † | 0.001 ‡ |
Mean IOP in both eyes | 14.73 ± 2.01 | 18.48 ± 5.71 | 16.21 ± 2.86 | 23.39 ± 7.07 | 0.011 † | 0.001 ‡ |
Serum biomarkers | ||||||
MBP (pg/mL) | 61.91 ± 100.02 | 318.12 ± 146.91 | 299.80 ± 142.82 | 354.78 ± 159.37 | <0.001 † | 0.110 |
HSP60 (ng/mL) | 58.3 ± 110.49 | 22.00 ± 46.03 | 15.90 ± 42.51 | 34.20 ± 53.73 | 0.294 | 0.360 |
Anti-SSA antibody (Ab index) | 0.23 ± 0.14 | 0.25 ± 0.12 | 0.28 ± 0.14 | 0.18 ± 0.04 | 0.209 | 0.012 ‡ |
Anti-SSB antibody (Ab index) | 0.94 ± 0.10 | 1.01 ± 0.11 | 1.05 ± 0.12 | 0.95 ± 0.06 | 0.033 † | 0.007 ‡ |
Anti-α-fodrin antibody (IgG) (U/mL) | 4.21 ± 2.32 | 3.35 ± 2.13 | 2.50 ± 0.71 | 5.08 ± 2.98 | 0.045 † | 0.004 ‡ |
Anti-α-fodrin antibody (IgA) (U/mL) | 5.62 ± 4.12 | 5.14 ± 2.75 | 4.12 ± 2.05 | 7.19 ± 2.96 | 0.772 | 0.025 ‡ |
ANA antibody (Ab index) | 0.24 ± 0.14 | 0.26 ± 0.13 | 0.28 ± 0.16 | 0.23 ± 0.05 | 0.136 | 0.443 |
AUC | 95% CI | p-Value | Cut Off Value | Sensitivity | Specificity | J-Index | |
---|---|---|---|---|---|---|---|
MBP (pg/mL) | 0.924 | 0.845–1.000 | <0.001 * | 183.4 | 0.857 | 0.882 | 0.739 |
HSP60 (ng/mL) | 0.601 | 0.415–0.786 | 0.291 | 3.705 | 0.619 | 0.647 | 0.266 |
Anti-SSA antibody (Ab index) | 0.620 | 0.423–0.818 | 0.207 | 0.172 | 0.810 | 0.529 | 0.339 |
Anti-SSB antibody (Ab index) | 0.705 | 0.532–0.878 | 0.032 * | 0.979 | 0.619 | 0.765 | 0.384 |
Anti-α-fodrin antibody (IgG) (U/mL) | 0.692 | 0.521–0.862 | 0.044 * | 3.209 | 0.667 | 0.765 | 0.432 |
Anti-α-fodrin antibody (IgA) (U/mL) | 0.529 | 0.334–0.716 | 0.758 | 5.884 | 0.667 | 0.412 | 0.079 |
ANA antibody (Ab index) | 0.644 | 0.458–0.831 | 0.131 | 0.210 | 0.619 | 0.701 | 0.320 |
AUC | 95% CI | p-Value | Cut Off Value | Sensitivity | Specificity | J-Index | |
---|---|---|---|---|---|---|---|
MBP (pg/mL) | 0.725 | 0.459–0.990 | 0.101 | 353.5 | 0.857 | 0.714 | 0.571 |
HSP60 (ng/mL) | 0.628 | 0.362–0.859 | 0.351 | 6.773 | 0.429 | 0.786 | 0.215 |
Anti-SSA antibody (Ab index) | 0.837 | 0.642–1.000 | 0.014 * | 0.185 | 0.714 | 0.857 | 0.571 |
Anti-SSB antibody (Ab index) | 0.852 | 0.639–1.000 | 0.010 * | 0.962 | 0.875 | 0.929 | 0.804 |
Anti-α-fodrin antibody (IgG) (U/ml) | 0.878 | 0.730–1.000 | 0.058 | 2.847 | 1.000 | 0.643 | 0.643 |
Anti-α-fodrin antibody (IgA) (U/ml) | 0.806 | 0.561–1.000 | 0.025 * | 5.742 | 0.875 | 0.857 | 0.732 |
ANA antibody (Ab index) | 0.597 | 0.354–0.839 | 0.479 | 0.260 | 0.714 | 0.500 | 0.214 |
AUC | 95% CI | p-Value | Cut Off Value | Sensitivity | Specificity | J-Index | |
---|---|---|---|---|---|---|---|
MBP (pg/mL) | 0.941 | 0.825–1.000 | 0.001 | 295.9 | 0.857 | 0.941 | 0.798 |
HSP60 (ng/mL) | 0.529 | 0.278–0.781 | 0.724 | 3.705 | 0.571 | 0.647 | 0.218 |
Anti-SSA antibody (Ab index) | 0.508 | 0.283–0.734 | 0.949 | 0.216 | 0.857 | 0.411 | 0.268 |
Anti-SSB antibody (Ab index) | 0.517 | 0.278–0.756 | 0.899 | 0.928 | 0.714 | 0.470 | 0.184 |
Anti-α-fodrin antibody (IgG) (U/mL) | 0.567 | 0.310–0.825 | 0.611 | 3.683 | 0.571 | 0.588 | 0.159 |
Anti-α-fodrin antibody (IgA) (U/mL) | 0.723 | 0.459–0.986 | 0.092 | 7.305 | 0.571 | 0.941 | 0.512 |
ANA antibody (Ab index) | 0.613 | 0.376–0.851 | 0.391 | 0.195 | 0.714 | 0.647 | 0.361 |
AUC | 95% CI | p-Value | Cut Off Value | Sensitivity | Specificity | J-Index | |
---|---|---|---|---|---|---|---|
MBP (pg/mL) | 0.916 | 0.820–1.000 | <0.001 | 183.4 | 0.857 | 0.882 | 0.739 |
HSP60 (ng/mL) | 0.637 | 0.437–0.836 | 0.197 | 4.568 | 0.714 | 0.588 | 0.302 |
Anti-SSA antibody (Ab index) | 0.685 | 0.490–0.880 | 0.081 | 0.172 | 1.000 | 0.574 | 0.574 |
Anti-SSB antibody (Ab index) | 0.798 | 0.634–0.963 | 0.005 | 0.979 | 0.857 | 0.765 | 0.622 |
Anti-α-fodrin antibody (IgG) (U/mL) | 0.821 | 0.674-0.969 | 0.002 | 3.207 | 0.857 | 0.765 | 0.622 |
Anti-α-fodrin antibody (IgA) (U/mL) | 0.655 | 0.457–0.854 | 0.142 | 2.817 | 0.571 | 0.765 | 0.336 |
ANA antibody (Ab index) | 0.660 | 0.462–0.858 | 0.132 | 0.210 | 0.643 | 0.706 | 0.349 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shin, Y.J.; Kim, E.; Han, B.K.; Yi, K. Serum Biomarkers for the Diagnosis of Glaucoma. Diagnostics 2021, 11, 20. https://doi.org/10.3390/diagnostics11010020
Shin YJ, Kim E, Han BK, Yi K. Serum Biomarkers for the Diagnosis of Glaucoma. Diagnostics. 2021; 11(1):20. https://doi.org/10.3390/diagnostics11010020
Chicago/Turabian StyleShin, Young Joo, Eunbi Kim, Bobby Kwanghoon Han, and Kayoung Yi. 2021. "Serum Biomarkers for the Diagnosis of Glaucoma" Diagnostics 11, no. 1: 20. https://doi.org/10.3390/diagnostics11010020
APA StyleShin, Y. J., Kim, E., Han, B. K., & Yi, K. (2021). Serum Biomarkers for the Diagnosis of Glaucoma. Diagnostics, 11(1), 20. https://doi.org/10.3390/diagnostics11010020