The Use of Saliva as a Biosample in the Light of COVID-19
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
3.1. Saliva Excretion and Physiology of Salivary Glands
3.2. Saliva Collection
3.2.1. Procedures including Patient
3.2.2. Pre-Analytical Laboratory Procedures for Saliva Diagnostic Protocol
3.2.3. Saliva Stability for Diagnostics
3.2.4. Saliva Biobanking
3.3. Salivary Diagnostics of SARS-CoV-2
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Llena-Puy, C. The rôle of saliva in maintaining oral health and as an aid to diagnosis. Med. Oral Patol. Oral Cir. Bucal. 2006, 11, E449–E455. [Google Scholar] [PubMed]
- Rabelo, M.A.; Reis, A.; Thiemi, M. Saliva and dental erosion. J. Appl. Oral Sci. 2012, 20, 493–502. [Google Scholar] [CrossRef] [Green Version]
- Hemingway, C.A.; White, A.J.; Shellis, R.P.; Addy, M.; Parker, D.M.; Barbour, M.E. Enamel erosion in dietary acids: Inhibition by food proteins in vitro. Caries Res. 2011, 44, 525–530. [Google Scholar] [CrossRef]
- Kaczor-Urbanowicz, K.E.; Carreras-Presas, C.; Aro, K.M.; Tu, M.; Garcia-Godoy, F.; Wong, D.T.W. Saliva diagnostics—Current views and directions. Exp. Biol. Med. 2017, 242, 459–472. [Google Scholar] [CrossRef] [Green Version]
- Nardi, G.M.; Cesarano, F.; Papa, G.; Chiavistelli, L.; Ardan, R.; Jedlinski, M.; Mazur, M.; Grassi, R.; Grassi, F.R. Evaluation of salivary matrix metalloproteinase (MMP-8) in periodontal patients undergoing non-surgical periodontal therapy and mouthwash based on ozonated olive oil: A randomized clinical trial. Int. J. Environ. Res. Public Health 2020, 17, 6619. [Google Scholar] [CrossRef] [PubMed]
- Sabino-Silva, R.; Jardim, A.C.G.; Siqueira, W.L. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin. Oral Investig. 2020, 24, 13–15. [Google Scholar] [CrossRef] [Green Version]
- Paradowska-Stolarz, A. Oral manifestations of COVID-19: Brief review. Dent. Med. Probl. 2021, 58, 123–126. [Google Scholar] [CrossRef]
- To, K.K.W.; Tsang, O.T.Y.; Yip, C.C.Y.; Chan, K.H.; Wu, T.C.; Chan, J.M.C.; Leung, W.S.; Chik, T.S.H.; Choi, C.Y.C.; Kandamby, D.H.; et al. Consistent detection of 2019 novel coronavirus in saliva. Clin. Infect. Dis. 2020, 71, 841–843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nunes, L.A.S.; Mussavira, S.; Bindhu, O.S. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: A systematic review. Biochem. Med. 2015, 25, 177–192. [Google Scholar] [CrossRef]
- Loo, J.A.; Yan, W.; Ramachandran, P.; Wong, D.T. Comparative human salivary and plasma proteomes. J. Dent. Res. 2010, 89, 1016–1023. [Google Scholar] [CrossRef] [Green Version]
- Justino, A.B.; Teixeira, R.R.; Peixoto, L.G.; Jaramillo, O.L.B.; Espindola, F.S. Effect of saliva collection methods and oral hygiene on salivary biomarkers. Scand. J. Clin. Lab. Invest. 2017, 77, 415–422. [Google Scholar] [CrossRef] [PubMed]
- Holmberg, K.V.; Hoffman, M.P. Anatomy, biogenesis and regeneration of salivary glands. In Saliva: Secretion and Functions; Karger: Berlin, Germany, 2014; Volume 24. [Google Scholar]
- Granger, D.A.; Johnson, S.B.; Szanton, S.L.; Out, D.; Schumann, L.L. Incorporating salivary biomarkers into nursing research: An overview and review of best practices. Biol. Res. Nurs. 2012, 14, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Bhattarai, K.R.; Kim, H.R.; Chae, H.J. Compliance with saliva collection protocol in healthy volunteers: Strategies for managing risk and errors. Int. J. Med. Sci. 2018, 15, 823–831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pramanik, R.; Thompson, H.; Kistler, J.O.; Wade, W.G.; Galloway, J.; Peakman, T.; Proctor, G.B. Effects of the UK biobank collection protocol on potential biomarkers in saliva. Int. J. Epidemiol. 2012, 41, 1786–1797. [Google Scholar] [CrossRef] [Green Version]
- Anastasova, S.; Crewther, B.; Bembnowicz, P.; Curto, V.; Ip, H.M.; Rosa, B.; Yang, G.Z. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 2017, 93, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Howland, L.C.; Pickler, R.H.; Sullenbarger, B.A.; Connelly, C.D. Oxytocin levels in community-collected saliva samples transported by dry versus wet ice. Biol. Res. Nurs. 2018, 20, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Gardner, A.; Parkes, H.G.; Carpenter, G.H.; So, P.W. Developing and standardizing a protocol for quantitative proton nuclear magnetic resonance (1H NMR) spectroscopy of saliva. J. Proteome Res. 2018, 17, 1521–1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goode, M.R.; Cheong, S.Y.; Li, N.; Ray, W.C.; Bartlett, C.W. Collection and extraction of saliva DNA for next generation sequencing. J. Vis. Exp. 2014, 90, 51697. [Google Scholar] [CrossRef]
- Goshen, O.; Goldfarb, D.M.; Book, L.; Tilley, P.; Gantt, S. Recovery of cytomegalovirus DNA from newborn saliva samples by different methods. J. Clin. Virol. 2018, 104, 73–76. [Google Scholar] [CrossRef] [PubMed]
- Caragata, M.; Shah, A.K.; Schulz, B.L.; Hill, M.M.; Punyadeera, C. Enrichment and identification of glycoproteins in human saliva using lectin magnetic bead arrays. Anal. Biochem. 2016, 497, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Rabassa, M.; López, P.; Rodríguez-Santiago, R.E.; Cases, A.; Felici, M.; Sánchez, R.; Yamamura, Y.; Rivera-Amill, V. Cigarette smoking modulation of saliva microbial composition and cytokine levels. Int. J. Environ. Res. Public Health 2018, 15, 2479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Waateringe, R.P.; Mook-Kanamori, M.J.; Slagter, S.N.; Van Der Klauw, M.M.; Van Vliet-Ostaptchouk, J.V.; Graaff, R.; Lutgers, H.L.; Suhre, K.; El-Din Selim, M.M.; Mook-Kanamori, D.O.; et al. The association between various smoking behaviors, cotinine biomarkers and skin autofluorescence, a marker for advanced glycation end product accumulation. PLoS ONE 2017, 12, e0179330. [Google Scholar] [CrossRef]
- Vrbanović, E.; Lapić, I.; Rogić, D.; Alajbeg, I.Z. Changes in salivary oxidative status, salivary cortisol, and clinical symptoms in female patients with temporomandibular disorders during occlusal splint therapy: A 3-month follow up. BMC Oral Health 2019, 19, 100. [Google Scholar] [CrossRef]
- Rolfsjord, L.B.; Bakkeheim, E.; Berents, T.L.; Alm, J.; Skjerven, H.O.; Carlsen, K.H.; Mowinckel, P.; Sjöbeck, A.C.; Carlsen, K.C.L. Morning salivary cortisol in young children: Reference values and the effects of age, sex, and acute bronchiolitis. J. Pediatr. 2017, 184, 193–198.e3. [Google Scholar] [CrossRef] [Green Version]
- Honarmand, M.; Nakhaee, A.; Moradi, M. Comparison of salivary cotinine concentrations in male smokers and smokeless tobacco users. Asian Pacific J. Cancer Prev. 2018, 19, 1363–1366. [Google Scholar] [CrossRef]
- Binshabaib, M.S.; Mehmood, A.; Akram, Z.; ALHarthi, S.S. Peri-implant clinical and radiographic status and whole salivary cotinine levels among cigarette and waterpipe smokers and never-smokers. J. Oral Sci. 2018, 60, 247–252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szkaradkiewicz-Karpińska, A.K.; Ronij, A.; Goślińska-Kuźniarek, O.; Przybyłek, I.; Szkaradkiewicz, A. MUC7 level as a new saliva risk factor for dental caries in adult patients. Int. J. Med. Sci. 2019, 16, 241–246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ligtenberg, A.J.M.; Brand, H.S.; Van Den Keijbus, P.A.M.; Veerman, E.C.I. The effect of physical exercise on salivary secretion of MUC5B, amylase and lysozyme. Arch. Oral Biol. 2015, 60, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Gabryel-Porowska, H.; Gornowicz, A.; Bielawska, A.; Wójcicka, A.; Maciorkowska, E.; Grabowska, S.Z.; Bielawski, K. Mucin levels in saliva of adolescents with dental caries. Med. Sci. Monit. 2014, 20, 72–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiappin, S.; Antonelli, G.; Gatti, R.; De Palo, E.F. Saliva specimen: A new laboratory tool for diagnostic and basic investigation. Clin. Chim. Acta 2007, 383, 30–40. [Google Scholar] [CrossRef]
- Thomadaki, K.; Helmerhorst, E.J.; Tian, N.; Sun, X.; Siqueira, W.L.; Walt, D.R.; Oppenheim, F.G. Whole-saliva proteolysis and its impact on salivary diagnostics. J. Dent. Res. 2011, 90, 1325–1330. [Google Scholar] [CrossRef] [Green Version]
- Mendy, M.; Caboux, E.; Lawlor, T.R.; Wright, J.; Wild, C.P. Common Minimum Technical Standards and Protocols for Biobanks Dedicated to Cancer Research; IARC Technical Publications 44; IARC: Lyon, France, 2017. [Google Scholar]
- De Paoli, P. Biobanking in microbiology: From sample collection to epidemiology, diagnosis and research. FEMS Microbiol. Rev. 2005, 29, 897–910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koni, A.C.; Scott, R.A.; Wang, G.; Bailey, M.E.S.; Peplies, J.; Bammann, K.; Pitsiladis, Y.P. DNA yield and quality of saliva samples and suitability for large-scale epidemiological studies in children. Int. J. Obes. 2011, 35, S113–S118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melas, P.A.; Sjöholm, L.K.; Forsner, T.; Edhborg, M.; Juth, N.; Forsell, Y.; Lavebratt, C. Examining the public refusal to consent to DNA biobanking: Empirical data from a Swedish population-based study. J. Med. Ethics 2010, 36, 93–98. [Google Scholar] [CrossRef] [Green Version]
- Long, M.D.; Cadigan, R.J.; Cook, S.F.; Haldeman, K.; Kuczynski, K.; Sandler, R.S.; Martin, C.F.; Chen, W.; Kappelman, M.D. Perceptions of patients with inflammatory bowel diseases on biobanking. Inflamm. Bowel Dis. 2015, 21, 132–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AMANHI (Alliance for Maternal and Newborn Health Improvement); Baqui, A.H.; Khanam, R.; Rahman, M.S.; Ahmed, A.; Rahman, H.H.; Moin, M.I.; Ahmed, S.; Jehan, F.; Nisar, I.; et al. Understanding biological mechanisms underlying adverse birth outcomes in developing countries: Protocol for a prospective cohort (AMANHI bio-banking) study. J. Glob. Health 2017, 7, 021202. [Google Scholar] [CrossRef]
- Depuydt, C.E.; Boulet, G.A.V.; Horvath, C.A.J.; Benoy, I.H.; Vereecken, A.J.; Bogers, J.J. Comparison of MY09/11 consensus PCR and type-specific PCRs in the detection of oncogenic HPV types. J. Cell. Mol. Med. 2007, 11, 881–891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corstjens, P.L.A.M.; Abrams, W.R.; Malamud, D. Saliva and viral infections. Periodontology 2000 2016, 70, 93–110. [Google Scholar] [CrossRef]
- To, K.K.; Tsang, Y.; Leung, W.; Tam, A.R.; Wu, T.; Lung, D.C.; Yip, C.C.; Cai, J.; Chan, J.F.J.M.; Chik, S.-H.; et al. Temporal profiles of viral load in posterior oropharyngeal saliva samples and serum antibody responses during infection by SARS-CoV-2: An observational cohort study. Lancet Infect. Dis. 2020, 3099, 565–574. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Liu, S.; Xiang, M.; Li, S.; Zhao, D.; Huang, C.; Chen, S. Protecting healthcare personnel from 2019-nCoV infection risks: Lessons and suggestions. Front. Med. 2020, 1275, 2019–2021. [Google Scholar] [CrossRef] [Green Version]
- FDA. Accelerated Emergency Use Authorization (EUA) Summary SARS-CoV-2 Assay. In Rutgers Clinical Genomics Laboratory TaqPath SARS-CoV-2 Assay EUA Summary; FDA: Silver Spring, MD, USA, 2020. [Google Scholar]
- Azzi, L.; Carcano, G.; Gianfagna, F.; Grossi, P.; Gasperina, D.D.; Genoni, A.; Fasano, M.; Sessa, F.; Tettamanti, L.; Carinci, F.; et al. Saliva is a reliable tool to detect SARS-CoV-2. J. Infect. 2020, 81, e45–e50. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, P.S.; Sailey, C.; Guest, J.L.; Guarner, J.; Kelley, C.; Siegler, A.J.; Valentine-Graves, M.; Gravens, L.; del Rio, C.; Sanchez, T.H. Detection of SARS-CoV-2 RNA and antibodies in diverse samples: Protocol to validate the sufficiency of provider-observed, home-collected blood, saliva, and oropharyngeal samples. JMIR Public Health Surveill. 2020, 6, e19054. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.G.; Yoon, J.; Song, J.Y.; Yoon, S.Y.; Lim, C.S.; Seong, H.; Noh, J.Y.; Cheong, H.J.; Kim, W.J. Clinical significance of a high SARS-CoV-2 viral load in the saliva. J. Korean Med. Sci. 2020, 35, e195. [Google Scholar] [CrossRef]
- Lamb, L.E.; Bartolone, S.N.; Ward, E.; Chancellor, M.B. Rapid detection of novel coronavirus/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by reverse transcription-loop-mediated isothermal amplification. PLoS ONE 2020, 15, e0234682. [Google Scholar] [CrossRef]
- Chen, J.H.-K.; Yip, C.C.-Y.; Poon, R.W.-S.; Chan, K.-H.; Cheng, V.C.-C.; Hung, I.F.-N.; Chan, J.F.-W.; Yuen, K.-Y.; To, K.K.-W. Evaluating the use of posterior oropharyngeal saliva in a point-of-care assay for the detection of SARS-CoV-2. Emerg. Microbes Infect. 2020, 9, 1356–1359. [Google Scholar] [CrossRef]
- Wong, S.C.Y.; Tse, H.; Siu, H.K.; Kwong, T.S.; Chu, M.Y.; Yau, F.Y.S.; Cheung, I.Y.Y.; Tse, C.W.S.; Poon, K.C.; Cheung, K.C.; et al. Posterior oropharyngeal saliva for the detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin. Infect. Dis. 2020, 71, 2939–2946. [Google Scholar] [CrossRef] [PubMed]
- McCormick-Baw, C.; Morgan, K.; Gaffney, D.; Cazares, Y.; Jaworski, K.; Byrd, A.; Molberg, K.; Cavuoti, D. Saliva as an alternate specimen source for detection of sarscov-2 in symptomatic patients using cepheid xpert xpress SARS-CoV-2. J. Clin. Microbiol. 2020, 58, 2–3. [Google Scholar] [CrossRef]
- Kim, S.E.; Lee, J.Y.; Lee, A.; Kim, S.; Park, K.H.; Jung, S.I.; Kang, S.J.; Oh, T.H.; Kim, U.J.; Lee, S.Y.; et al. Viral load kinetics of SARS-CoV-2 infection in saliva in Korean patients: A prospective multi-center comparative study. J. Korean Med. Sci. 2020, 35, e287. [Google Scholar] [CrossRef]
- Leung, E.C.; Chow, V.C.; Lee, M.K.; Lai, R.W. Deep throat saliva as an alternative diagnostic specimen type for the detection of SARS-CoV-2. J. Med. Virol. 2020, 93, 533–536. [Google Scholar] [CrossRef]
- Moreno-Contreras, J.; Espinoza, M.A.; Sandoval-Jaime, C.; Cantú-Cuevas, M.A.; Barón-Olivares, H.; Ortiz-Orozco, O.D.; Muñoz-Rangel, A.V.; Hernández-de la Cruz, M.; Eroza-Osorio, C.M.; Arias, C.F.; et al. Saliva sampling and its direct lysis, an excellent option to increase the number of SARS CoV2 diagnostic tests in settings with supply shortages. J. Clin. Microbiol. 2020, 58, e01659-20. [Google Scholar] [CrossRef]
- Hung, D.L.-L.; Li, X.; Chiu, K.H.-Y.; Yip, C.C.-Y.; To, K.K.-W.; Chan, J.F.-W.; Sridhar, S.; Chung, T.W.-H.; Lung, K.-C.; Liu, R.W.-T.; et al. Early-morning vs. spot posterior oropharyngeal saliva for diagnosis of SARS-CoV-2 infection: Implication of timing of specimen collection for community-wide screening. Open Forum Infect. Dis. 2020, 7, ofaa210. [Google Scholar] [CrossRef] [PubMed]
Types of Saliva Collection | Mechanism | Examples of Commercial Kits | Examples of Non-Commercial Kits | |
---|---|---|---|---|
Unstimulated | Spitting | Accumulation and continuous spitting of saliva | Omnigene, DNA Genotec® | Spitting saliva into the sterile probe, falcon. |
Passive drool | Accumulation of saliva on the floor of the mouth, patient leaning forward | Salivabio’s Passive Drool, (Salimetrics® Europe Ltd., Suffolk, UK) | Saliva flow into the sterile probe, falcon. | |
Soaking—children under 6 | Soaking saliva with sorbent | Sorbette (Hydrocellulose, Salimetrics® Europe Ltd., Suffolk, UK) | Cotton swab | |
Stimulated | Mechanical | Chewing | Salivette®, Sarstedt | Chewing gum, Paraffin |
Chemical | Rinsing oral cavity with chemical compound stimulating saliva production | Saliva Collection System (Scs)® (Greiner Bio-One Gmgh, Kremsmuenster, Austria) | Drops of lemon juice |
Laboratory Parameters | Article Authors and References Number | Diagnostic Technique | Description of Patients’ Preparation before Saliva Collection | Method of Saliva Collection | Commercial Kit for Saliva Collection | Saliva Storage before Experiment | Addition of Stabilisation Buffer | Volume of Sample | Centrifugation Prior Experiment | Sample Biobanking Temp. |
---|---|---|---|---|---|---|---|---|---|---|
Salivary cortisol levels | Anastasova et al., 2017 [16] | ELISA | No. | Unstimulated saliva: passive drool | No | −80 °C | No. | 1 mL | Yes | −80 °C |
Vrbanović, Lapić, Rogić, & Alajbeg, 2019 [24] | ELISA | -7 a.m. And 5 p.m., -2 h no food and oral hygiene, -oral cavity rinsing with water before collection. | Unstimulated saliva: spitting (?) | No | −80 °C | No | 5 mL (aliquots of 1 mL each) | 1000× g, 5 min | −80 °C | |
Rolfsjord et al., 2017 [25] | Radioimmunoassay | -6:00 a.m., -fasting saliva. | Unstimulated saliva: soaking of hydrocellulose in saliva | Yes | −86 °C | No | 150 µL | Yes | −86 °C | |
Cotinine | Van Waateringe et al., 2017 [23] | Ultra-high-performance liquid-phase chromatography Phy (uhplc) | -non-fasting saliva, -manufacturer recommendations. | Manufacturer recommendations | Yes | Wet ice | -manufacturer recommendations | ~2 mL | 2500× g for 10 min | −80 °C |
Honarmand, Nakhaee, & Moradi, 2018 [26] | ELISA | -9 a.m.-11 a.m. -rinsing oral cavity with water. | Stimulated saliva: chewing flavour-free gum for 60 s. | No | −70 °C | No | - | No | −70 °C | |
Binishabaib et al. [27] | ELISA | -morning hours, -fasting saliva. | Unstimulated saliva: passive drool | No | −70 °C | No | - | 3000 rpm for 15 min | −70 °C | |
Oral microbiome | Goode, Cheong, Li, Ray, & Bartlett, 2014 [19] | NGS | -30 min eating and drinking refrain, -oral cavity rinsing with water before collection. | Unstimulated saliva: spitting (?) | No | Rt * | Yes | 2.5 mL | No | <3 months: rt >3 months: 4 °C |
Rodríguez-Rabassa et al., 2018 [22] | PCR technique | No | Unstimulated saliva: passive drool | Yes | −20 °C | No | 1 mL | No | - | |
Pramanik et al., 2012 [15] | Sequencing 16 s rrna genes | -2 p.m. to 4 p.m. | Unstimulated saliva: passive drool | No | 24 h in 4 °C | Yes | 5 mL | 13,000× g for 5 min | −80 °C | |
Salivary mucins (muc7 muc5b) | Szkaradkiewicz-Karpińska et al. [28] | ELISA | -8 a.m. to 10 p.m., -2 h of eating and drinking withdrawal. | Unstimulated saliva: spitting. | No | −80 °C | No | 2 mL | 3000× g for 15 min in 4 °C | −80 °C |
Ligtenberg, Brand, Van Den Keijbus, & Veerman, 2015 [29] | -ELISA, -westernblot, -sds-page gels | -9 a.m. to 11 a.m. -preparation of patients and samples according previous research | Unstimulated saliva: expectoration | No | −20 °C | Yes | - | 10,000× g for 5 min | - | |
Gabryel-Porowska et al., 2014 [30] | ELISA | -9 a.m. to 11 a.m. -no further description of preparation | Unstimulated saliva: spitting | No | −70 °C | No | - | 10,000× g for 15 min in 4 °C | −70 °C | |
Pramanik et al., 2012 [15] | SDS-page gels | -2 p.m. to 4 p.m. -no further description of preparation | Unstimulated saliva: passive drool | No | 24 h in 4 °C | Yes | 5 mL | No | −80 °C |
Remarks | Description of Steps |
---|---|
Patient preparation for saliva collection: | 1. Patient does not eat, drink or perform oral hygiene for two hours before saliva collection. |
2. Patient washes mouth with lukewarm water, and spits it without swallowing. | |
3. Patient waits 5 min after washing mouth with water. | |
Whole saliva collection up to 10 min | 4. Saliva is collected by spitting, after natural secretion without stimulation, material is collected to sterile 5 mL volume probe. |
Probe is placed on ice during transport and pre-analytical preparations | 5. pH is measured and result is recorded in patients’ chart. |
6. Saliva is mixed with a sterile disposable pipette to homogenise the probe. | |
7. Addition of a stabilisation buffer for the time of transport to the laboratory (step to be evaluated if the method allows it). | |
Laboratory proceedings for the saliva preparation: | 8. Centrifugation in 4 °C, 2500 rpm. |
9. Supernatant is collected, and precipitate is disposed. | |
10. Store at −80 °C. |
References | Type of Saliva | Saliva Collection Point | Patient Preparation for Saliva Collection | Addition of Viral Transport Medium | Time of Saliva Collection |
[41] | Posterior oropharynx saliva | Hospital | No oral hygiene and eating before saliva collection. | Yes | Early morning after awakening |
[44] | Whole saliva, by drooling technique | Hospital | ND * | No | ND |
[45] | Whole saliva, by drooling technique | Self-collection | No oral hygiene and eating 10 min. before saliva collection. Rinsing mouth with water 5 min before saliva collection. | Yes | ND |
[46] | Whole saliva, by spitting technique | Supervised self-collection | No information about baseline probe collection. Chlorhexidine gluconate mouthwash used before next collection | Yes | ND |
[47] | Whole saliva, by spitting technique | Supervised self-collection | No oral hygiene and eating 5 min. before saliva collection. Rinsing mouth with water. | Yes | ND |
[48] | Posterior oropharynx saliva | Supervised self-collection | No oral hygiene and eating 5 min. before saliva collection. Rinsing mouth with water. | Yes | Early morning |
[49] | Posterior oropharynx saliva | Self-collection to sterile urine cap | No oral hygiene, eating, and drinking before saliva collection | No | Early morning after awakening |
[50] | Whole saliva | Supervised self-collection to sterile urine cap | No oral hygiene, eating, and drinking, tobacco, or gum for 30 min before saliva collection | No | ND |
[51] | Whole saliva, by spitting technique | Supervised self-collection to Spectrum Solutions LLC SDNA-1000 Saliva Collection Device | ND | Yes | ND |
[52] | Posterior oropharynx saliva | Supervised self-collection | ND | Viral transport medium prepared at home | ND |
[53] | Whole saliva, by spitting technique | Supervised self-collection to sterile urine cap | ND | No viral transport media, nor stabilising agents | ND |
[54] | Posterior oropharynx saliva | Supervised self-collection to sterile specimen bottle | 1: No oral hygiene, eating, and drinking before saliva collection.2–5: no special requirements. | Yes | 1. Early-morning; 2. Before lunch; 3. Before afternoon tea at 3 p.m.; 4. Before dinner; 5. Before bedtime. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duś-Ilnicka, I.; Krala, E.; Cholewińska, P.; Radwan-Oczko, M. The Use of Saliva as a Biosample in the Light of COVID-19. Diagnostics 2021, 11, 1769. https://doi.org/10.3390/diagnostics11101769
Duś-Ilnicka I, Krala E, Cholewińska P, Radwan-Oczko M. The Use of Saliva as a Biosample in the Light of COVID-19. Diagnostics. 2021; 11(10):1769. https://doi.org/10.3390/diagnostics11101769
Chicago/Turabian StyleDuś-Ilnicka, Irena, Elżbieta Krala, Paulina Cholewińska, and Małgorzata Radwan-Oczko. 2021. "The Use of Saliva as a Biosample in the Light of COVID-19" Diagnostics 11, no. 10: 1769. https://doi.org/10.3390/diagnostics11101769
APA StyleDuś-Ilnicka, I., Krala, E., Cholewińska, P., & Radwan-Oczko, M. (2021). The Use of Saliva as a Biosample in the Light of COVID-19. Diagnostics, 11(10), 1769. https://doi.org/10.3390/diagnostics11101769