The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Fractal Parameters
2.2. Input Data Vector
3. Results
3.1. Preliminary Classification by Unsupervised Statistical Methods
3.2. Neural Classifier—Kohonen Network
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blum, A.; Hofmann-Wellenhof, R.; Luedtke, H.; Ellwanger, U.; Steins, A.; Roehm, S.; Garbe, C.; Soyer, H. Value of the clinical history for different users of dermoscopy compared with results of digital image analysis. J. Eur. Acad. Dermatol. Venereol. 2004, 18, 665–669. [Google Scholar] [CrossRef]
- Capdehourat, G.; Corez, A.; Bazzano, A.; Alonso, R.; Musé, P. Toward a combined tool to assist dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions. Pattern Recognit. Lett. 2011, 32, 2187–2196. [Google Scholar] [CrossRef]
- Kittler, H. Dermatoscopy: Introduction of a new algorithmic method based on pattern analysis for diagnosis of pigmented skin lesions. Dermatopathol. Pract. Concept. 2007, 13, 3. [Google Scholar]
- Placek, W. Wykwity skórne i stany narzucone. In Wybrane Pojęcia z Dermatologii—Encyklopedia Badań Medycznych; Wydawnictwo Medyczne MAKmed: Gdańsk, Poland, 1996. [Google Scholar]
- Ruiz, D.; Berenguer, V.; Soriano, A.; SáNchez, B. A Decision support system for the diagnosis of melanoma: A comparative approach. Expert Syst. Appl. 2011, 38, 15217–15223. [Google Scholar] [CrossRef]
- Zalewska-Janowska, A.; Błaszczyk, H. Choroby Skóry; Wydawnictwo Lekarskie PZWL: Warszawa, Poland, 2009; ISBN 978-83-200-3760-9. [Google Scholar]
- Miedziński, F. Melanodermie i inne choroby barwnikowe. In Dermatologia; PZWL: Warszawa, Poland, 1982; pp. 751–760. [Google Scholar]
- Tschandl, P.; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of common pigmented skin lesions. Sci. Data 2018, 5, 180161. [Google Scholar] [CrossRef] [PubMed]
- Brú, A.; Albertos, S.; Luis Subiza, J.; García-Asenjo, J.L.; Brú, I. The universal dynamics of tumor growth. Biophys. J. 2003, 85, 2948–2961. [Google Scholar] [CrossRef] [Green Version]
- Korotkov, K.; Garcia, R. Computerized analysis of pigmented skin lesions: A review. Artif. Intell. Med. 2012, 56, 69–90. [Google Scholar] [CrossRef]
- Kuczyński, K. Klasyfikacja Obrazów Radiologicznych Na Podstawie Wymiaru Fraktalnego. Sci. Bull. Chełm Sect. Math. Comput. Sci. 2008, 1, 167–173. [Google Scholar]
- Okuboyejo, D.A.; Olugbara, O.O.; Odunaike, S.A. Automating Skin Disease Diagnosis Using Image Classification. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 23–25 October 2013. [Google Scholar]
- Przystalski, K. Detekcja i Klasyfikacja Barwnikowych Zmian Skóry na Zdjęciach Wielowarstwowych. Ph.D. Thesis, Polska Akademia Nauk, Warszawa, Poland, 2014. [Google Scholar]
- Johr, R.H. Dermoscopy: Alternative melanocytic algorithms—The ABCD rule of dermatoscopy, menzies scoring method, and 7-point checklist. Clin. Dermatol. 2002, 20, 240–247. [Google Scholar] [CrossRef]
- Stolz, W.; Reimann, A.; Cognetta, A.B. ABCD rule of dermatoscopy: A new practical method for early recognition of malignant melanoma. 1994. [Google Scholar]
- Baish, J.W.; Jain, R.K. Fractals and cancer. Cancer Res. 2000, 60, 3683. [Google Scholar] [PubMed]
- Falconer, K.J. Fractal Geometry: Mathematical Foundations and Applications; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014; ISBN 978-1-118-76286-8. [Google Scholar]
- Mandelbrot, B.B. The Fractal Geometry of Nature/Revised and Enlarged Edition; WH Freeman and Co.: New York, NY, USA, 1983. [Google Scholar]
- Xu, S.; Weng, Y. A New approach to estimate fractal dimensions of corrosion images. Pattern Recognit. Lett. 2006, 27, 1942–1947. [Google Scholar] [CrossRef]
- Kunze, H.; La Torre, D.; Mendivil, F.; Vrscay, E.R. (Eds.) Fractal-Based Methods in Analysisi; Springer: New York, NY, USA, 2012; ISBN 978-1-4614-1890-0. [Google Scholar]
- Unlu, E.; Akay, B.N.; Erdem, C. Comparison of dermatoscopic diagnostic algorithms based on calculation:The abcd rule of dermatoscopy, the seven-point checklist, the three-point checklist and the cash algorithm in dermatoscopic evaluation of melanocytic lesions. J. Dermatol. 2014, 41, 598–603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawrence, M.J.; Sabra, A.; Thomas, P.; Obaid, D.R.; D’Silva, L.A.; Morris, R.H.K.; Hawkins, K.; Brown, M.R.; Williams, P.R.; Davidson, S.J.; et al. Fractal dimension: A novel clot microstructure biomarker use in st elevation myocardial infarction patients. Atherosclerosis 2015, 240, 402–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beckers, F.; Verheyden, B.; Couckuyt, K.; Aubert, A.E. Fractal dimension in health and heart failure. Biomed. Tech. (Berl) 2006, 51, 194–197. [Google Scholar] [CrossRef]
- Zheng, Y.; Keller, B.M.; Ray, S.; Wang, Y.; Conant, E.F.; Gee, J.C.; Kontos, D. Parenchymal texture analysis in digital mammography:A fully automated pipeline for breast cancer risk assessment. Med. Phys. 2015, 42, 4149–4160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daye, D.; Keller, B.; Conant, E.F.; Chen, J.; Schnall, M.D.; Maidment, A.D.A.; Kontos, D. Mammographic parenchymal patterns as an imaging marker of endogenous hormonal exposure:A preliminary study in a high-risk population. Acad. Radiol. 2013, 20, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Sindeaux, R.; de Souza Figueiredo, P.T.; de Melo, N.S.; Guimarães, A.T.B.; Lazarte, L.; Pereira, F.B.; de Paula, A.P.; Leite, A.F. Fractal Dimension and mandibular cortical width in normal and osteoporotic men and women. Maturitas 2014, 77, 142–148. [Google Scholar] [CrossRef]
- Use of Fractal Analysis in Dental Images for Osteoporosis Detection: A Systematic Review and Meta-Analysis. Available online: https://link.springer.com/article/10.1007/s00198-021-05852-3 (accessed on 14 September 2021).
- Huang, C.C.; Chen, J.C.; Chang, Y.C.; Jeng, J.H.; Chen, C.M. A fractal dimensional approach to successful evaluation of apical healing. Int. Endod. J. 2013, 46, 523–529. [Google Scholar] [CrossRef]
- Carpinteri, A.; Lacidogna, G.; Niccolini, G. Fractal analysis of damage detected in concrete structural elements under loading. Chaos Solitons Fractals 2009, 42, 2047–2056. [Google Scholar] [CrossRef]
- Shu, Z.R.; Chan, P.W.; Li, Q.S.; He, Y.C.; Yan, B.W. Quantitative assessment of offshore wind speed variability using fractal analysis. Wind Struct. 2020, 31, 363–371. [Google Scholar] [CrossRef]
- Kabaldin, Y.; Anosov, M.; Shatagin, D. Evaluation of the mechanism of the destruction of metals based on approaches of artificial intelligence and fractal analysis. IOP Conf. Ser. Mater. Sci. Eng. 2020, 709, 033076. [Google Scholar] [CrossRef]
- Nanoscale Morphology and Fractal Analysis of TiO2 Coatings on ITO Substrate by Electrodeposition—Amâncio—2021—Journal of Microscopy Wiley Online Library. Available online: https://onlinelibrary.wiley.com/doi/abs/10.1111/jmi.12990 (accessed on 14 September 2021).
- Sadeghi, B. Concentration-Concentration Fractal Modelling: A novel insight for correlation between variables in response to changes in the underlying controlling geological-geochemical processes. Ore Geol. Rev. 2021, 128, 103875. [Google Scholar] [CrossRef]
- Category-Based Fractal Modelling: A Novel Model to Integrate the Geology into the Data for More Effective Processing and Interpretation—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0375674221000613 (accessed on 14 September 2021).
- Sapota, W.; Szczepanik, P.; Stach, S.; Wróbel, Z. Fractal and multifractal analyses of the porosity degree of ceramics used in biomedicine. Adv. Sci. Eng. Med. 2020, 12, 450–456. [Google Scholar] [CrossRef]
- Kiselev, V.M.; Golovanova, O.A.; Fedoseev, V.B. The study of modified hydroxylapatite samples using the fractal theory. Crystallogr. Rep. 2021, 66, 479–485. [Google Scholar] [CrossRef]
- Analysis of Complex Modal Instability of a Minimal Friction Self-Excited Vibration System from Multiscale Fractal Surface Topography—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0997753821000206 (accessed on 14 September 2021).
- Arumugam, S.; Manoharan, S.; Palaniswamy, S.K.; Kumar, S. Design and performance analysis of a compact quad-element UWB MIMO antenna for automotive communications. Electronics 2021, 10, 2184. [Google Scholar] [CrossRef]
- Sarkar, N.; Chaudhuri, B.B. An efficient approach to estimate fractal dimension of textural images. Pattern Recognit. 1992, 25, 1035–1041. [Google Scholar] [CrossRef]
- Bisoi, A.K.; Mishra, J. On calculation of fractal dimension of images. Pattern Recognit. Lett. 2001, 22, 631–637. [Google Scholar] [CrossRef]
- Oczeretko, E.; Rogowski, F. Wymiar fraktalny i jego zastosowanie w biologii i medycynie. Probl. Med. Nukl. 1992, 6, 205–212. [Google Scholar]
- Omiotek, Z. Zastosowania Wymiaru Fraktalnego do analizy konturu obiektów. Inform. Autom. Pomiary Gospod. Ochr. Sr. 2012, 8–11. [Google Scholar]
- Allain, C.; Cloitre, M. Characterizing the Lacunarity of random and deterministic fractal sets. Phys. Rev. A 1991, 44, 3552–3558. [Google Scholar] [CrossRef]
- Filho, M.N.B.; Sobreira, F. Accuracy of Lacunarity Algorithms in Texture Classification of High Spatial Resolution Images from Urban Areas. Available online: https://www.isprs.org/proceedings/XXXVII/congress/3b_pdf/80.pdf (accessed on 29 July 2020).
- Gefen, Y.; Meir, Y.; Mandelbrot, B.B.; Aharony, A. Geometric implementation of hypercubic lattices with noninteger dimensionality by use of low lacunarity fractal lattices. Phys. Rev. Lett. 1983, 50, 145–148. [Google Scholar] [CrossRef]
- Khurshid, K.; Siddiqi, I.; Faure, C.; Vincent, N. Comparison of Niblack Inspired Binarization Methods for Ancient Documents. In Proceedings of the 16th Document Recognition and Retrieval Conference, Part of the IS&T-SPIE Electronic Imaging Symposium, San Jose, CA, USA, 18–22 January 2009. [Google Scholar]
- Sauvola, J.; Pietikäinen, M. Adaptive Document Image Binarization. Pattern Recognit. 2000, 33, 225–236. [Google Scholar] [CrossRef] [Green Version]
- Singh, T.R.; Roy, S.; Singh, O.I.; Sinam, T.; Singh, K. A new local adaptive thresholding technique in binarization. arXiv 2012, arXiv:1201.5227. [Google Scholar]
- Chen, W.-T.; Wen, C.-H.; Yang, C.-W. A fast two-dimensional entropic thresholding algorithm. Pattern Recognit. 1994, 27, 885–893. [Google Scholar] [CrossRef]
- Gupta, M.R.; Jacobson, N.P.; Garcia, E.K. OCR binarization and image pre-processing for searching historical documents. Pattern Recognit. 2007, 40, 389–397. [Google Scholar] [CrossRef]
- Niblack, W. An Introduction to Digital Image Processing; Prentice-Hall Internationa: Englewood Cliffs, NJ, USA; ISBN 978-0-13-480674-7.
- Chaurasia, V.; Pal, S. Machine Learning algorithms using binary classification and multi model ensemble techniques for skin diseases prediction. Int. J. Biomed. Eng. Technol. 2020, 34, 57–74. [Google Scholar] [CrossRef]
- Hameed, N.; Shabut, A.M.; Ghosh, M.K.; Hossain, M.A. Multi-class multi-level classification algorithm for skin lesions classification using machine learning techniques. Expert Syst. Appl. 2020, 141, 112961. [Google Scholar] [CrossRef]
Neuron Position | Activation | Dr−01 | Dg−01 | Db−01 | Ds−01 | Ar−01 | Ag−01 | Ab−01 | As−01 |
---|---|---|---|---|---|---|---|---|---|
(1, 5) | 3.78 | 2.20 | 2.20 | 2.21 | 1.12 | 5.38 | 5.75 | 6.00 | 6.00 |
(4, 1) | 0.10 | 2.07 | 2.08 | 2.12 | 2.09 | 0.91 | 1.04 | 1.24 | 1.24 |
(8, 1) | 0.28 | 2.44 | 2.27 | 2.13 | 2.28 | 6.19 | 7.49 | 5.37 | 5.37 |
Structure | Number of Classes | Number of Eras | Learning Error | Test Error |
---|---|---|---|---|
3 × 4 | 12 | 10,000 | 3.1% | 3.9% |
2 × 7 | 14 | 10,000 | 2.6% | 3.6% |
3 × 5 | 15 | 10,000 | 4.2% | 5.5% |
4 × 4 | 16 | 10,000 | 2.6% | 3.6% |
2 × 8 | 16 | 10,000 | 2.7% | 3.6% |
9 × 2 | 18 | 10,000 | 2.3% | 3.6% |
3 × 6 | 18 | 10,000 | 2.1% | 3.7% |
4 × 5 | 20 | 10,000 | 1.4% | 3.5% |
3 × 7 | 21 | 10,000 | 1.8% | 3.1% |
11 × 2 | 22 | 10,000 | 1.4% | 3.4% |
4 × 6 | 24 | 10,000 | 1.0% | 3.3% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Styła, M.; Giżewski, T. The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions. Diagnostics 2021, 11, 1773. https://doi.org/10.3390/diagnostics11101773
Styła M, Giżewski T. The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions. Diagnostics. 2021; 11(10):1773. https://doi.org/10.3390/diagnostics11101773
Chicago/Turabian StyleStyła, Monika, and Tomasz Giżewski. 2021. "The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions" Diagnostics 11, no. 10: 1773. https://doi.org/10.3390/diagnostics11101773
APA StyleStyła, M., & Giżewski, T. (2021). The Study of Usefulness of a Set of Fractal Parameters to Build Classes of Disease Units Based on Images of Pigmented Skin Lesions. Diagnostics, 11(10), 1773. https://doi.org/10.3390/diagnostics11101773