A Prediction Model of Incident Cardiovascular Disease in Patients with Sleep-Disordered Breathing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Overview of CVD Prediction Model
2.3. Extraction of ECG Features
2.3.1. Signal Processing-Based Features
2.3.2. AI-Based Features
2.3.3. Clinical Risk Factors
2.4. Selection of Incident CVD Predictor
2.5. Prediction of Incident CVD Outcomes
3. Results
3.1. Selection of Optimal Incident CVD Predictor
3.2. Performance Evaluation of Incidnet CVD Predictor
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Collop, N. The effect of obstructive sleep apnea on chronic medical disorders. Cleve Clin. J. Med. 2007, 74, 72–78. [Google Scholar] [CrossRef] [Green Version]
- Epstein, L.J.; Kristo, D.; Strollo, P.J., Jr.; Friedman, N.; Malhotra, A.; Patil, S.P.; Ramar, K.; Rogers, R.; Schwab, R.J.; Weaver, E.M.; et al. Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J. Clin. Sleep Med. 2009, 5, 263–276. [Google Scholar]
- Kim, J.; In, K.; Kim, J.; You, S.; Kang, K.; Shim, J.; Lee, S.; Lee, J.; Lee, S.; Park, C.; et al. Prevalence of sleep-disordered breathing in middle-aged Korean men and women. Am. J. Respr. Crit. Care Med. 2004, 170, 1108–1113. [Google Scholar] [CrossRef]
- Berry, R.B.; Brooks, R.; Gamaldo, C.E.; Harding, S.M.; Marcus, C.; Vaughn, B.V. The AASM Manual for the Scoring of Sleep and Associated Events. Rules, Terminology and Technical Specifications; American Academy of Sleep Medicine: Darien, IL, USA, 2012; p. 176. [Google Scholar]
- Golbin, J.M.; Somers, V.K.; Caples, S.M. Obstructive sleep apnea, cardiovascular disease, and pulmonary hypertension. Proc. Am. Thorac. Soc. 2008, 5, 200–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, G.V.; Stradling, J.; Davies, R. Obstructive sleep apnea/hypopnea syndrome and hypertension. Thorax 2004, 59, 1089–1094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marin, J.M.; Marin, J.M.; Carrizo, S.J.; Vicente, E.; Agusti, A.G. Longterm cardiovascular outcomes in men with obstructive sleep apnoeahypopnoea with or without treatment with continuous positive airway pressure: An observational study. Lancet 2005, 365, 1046–1053. [Google Scholar] [CrossRef]
- Jean-Louis, G.; Zizi, F.; Clark, L.T.; Brown, C.D.; McFarlane, S.I. Obstructive sleep apnea and cardiovascular disease: Role of the metabolic syndrome and its components. J. Clin. Sleep Med. 2008, 15, 261–272. [Google Scholar] [CrossRef] [Green Version]
- Anker, S.D.; von Haehling, S.; Germany, R. Sleep-disordered breathing and cardiovascular disease. Indian Heart J. 2016, 68, S69–S76. [Google Scholar] [CrossRef] [Green Version]
- Quan, S.F.; Howard, B.V.; Iber, C.; Kiley, J.P.; Nieto, F.J.; O’Connor, G.T.; Rapoport, D.M.; Redline, S.; Robbins, J.; Samet, J.M.; et al. The sleep heart health study: Design, rationale, and methods. Sleep 1997, 20, 1077–1085. [Google Scholar]
- Gottlieb, D.J.; Yenokyan, G.; Newman, A.B.; O’Connor, G.; Punjabi, N.M.; Quan, S.F.; Redline, S.; Resnick, H.E.; Tong, E.K.; Diener-West, M.; et al. Prospective study of obstructive sleep apnea and incident coronary heart disease and heart failure. Circulation 2010, 122, 352–360. [Google Scholar] [CrossRef] [Green Version]
- Redline, S.; Yenokyan, G.; Gottlieb, D.J.; Shahar, E.; O’Connor, G.; Resnick, H.E.; Diener-West, M.; Sanders, M.H.; Wolf, P.A.; Geraghty, E.M.; et al. Obstructive sleep apnea–hypopnea and incident stroke: The sleep heart health study. Am. J. Respir. Crit. Care Med. 2010, 182, 269–277. [Google Scholar] [CrossRef]
- Cui, Y.; Blumenthal, R.S.; Flaws, J.A.; Whiteman, M.K.; Langenberg, P.; Bachorik, P.S.; Bush, T.L. Non–high-density lipoprotein cholesterol level as a predictor of cardiovascular disease mortality. Arch. Intern. Med. 2001, 161, 1413–1419. [Google Scholar] [CrossRef]
- Hubert, H.B.; Feinleib, M.; McNamara, P.M.; Castelli, W.P. Obesity as an independent risk factor for cardiovascular disease: A 26-year follow-up of participants in the Framingham heart study. Circulation 1983, 67, 968–977. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Auer, R.; Bauer, D.C.; Marques-Vidal, P.; Butler, J.; Min, L.J.; Cornuz, J.; Satterfield, S.; Newman, A.B.; Vittinghoff, E.; Rodondi, N. Association of major and minor ECG abnormalities with coronary heart disease events. JAMA 2012, 307, 1497–1505. [Google Scholar]
- Pan, J.; Tompkins, W.J. A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 1985, 3, 230–236. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Chan, K.L.; Krishnan, S.M. Characteristic wave detection in ECG signal using morphological transform. BMC Cardiovasc. Disord. 2005, 5, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, D.Q.; Silka, M.J.; Lan, Y.T.; Chang, R.K.R. Comparison of formulas for calculation of the corrected QT interval in infants and young children. J. Pediatr. 2015, 166, 960–964. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Wang, N.; Chen, T.; Li, M. Empirical evaluation of rectified activations in convolutional network. arXiv 2015, arXiv:1505.00853. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
- Petrie, A.; Sabin, C. Medical Statistics at a Glance; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 29. [Google Scholar]
- Guyon, I.; Gunn, S.; Nikravesh, M.; Zadeh, L.A. Feature Extraction: Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2008; Volume 207. [Google Scholar]
- Liu, Y.; Bi, J.W.; Fan, Z.P. A method for multi-class sentiment classification based on an improved one-vs-one (OVO) strategy and the support vector machine (SVM) algorithm. Inform. Sci. 2017, 394, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Siti, H.N.; Kamisah, Y.; Kamsiah, J.J.V.P. The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vasc. Pharmacol. 2015, 71, 40–56. [Google Scholar] [CrossRef] [PubMed]
- Damen, J.A.A.G.; Hooft, L.; Schuit, E.; Debray, T.; Collins, G.; Tzoulaki, I.; Lassale, C.; Siontis, G.C.M.; Chiocchia, V.; Roberts, C.; et al. Prediction models for cardiovascular disease risk in the general population: Systematic review. BMJ 2016, 353, i2416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Actual | CVD-Free | CHD | HF | Stroke | Precision (%) | ||
---|---|---|---|---|---|---|---|
Predicted | |||||||
CVD-free | 1620 | 87 | 45 | 71 | 88.9 | ||
CHD | 140 | 238 | 10 | 25 | 57.6 | 65.7 | |
HF | 52 | 31 | 85 | 21 | 45.0 | ||
Stroke | 106 | 20 | 14 | 128 | 47.8 | ||
Recall (%) | 84.5 | 63.3 | 55.2 | 52.2 | 4 F1: 61.7 2 F1: 78.2 | ||
73.8 |
Actual | CVD-Free | CHD | HF | Stroke | Precision (%) | ||
---|---|---|---|---|---|---|---|
Predicted | |||||||
CVD-free | 394 | 23 | 13 | 20 | 87.5 | ||
CHD | 37 | 56 | 2 | 6 | 55.4 | 63.8 | |
HF | 13 | 12 | 20 | 4 | 40.8 | ||
Stroke | 31 | 7 | 3 | 33 | 44.6 | ||
Recall (%) | 82.9 | 57.2 | 52.6 | 52.4 | 4 F1: 59.1 2 F1: 76.5 | ||
71.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.-U.; Urtnasan, E.; Kim, S.-H.; Lee, K.-J. A Prediction Model of Incident Cardiovascular Disease in Patients with Sleep-Disordered Breathing. Diagnostics 2021, 11, 2212. https://doi.org/10.3390/diagnostics11122212
Park J-U, Urtnasan E, Kim S-H, Lee K-J. A Prediction Model of Incident Cardiovascular Disease in Patients with Sleep-Disordered Breathing. Diagnostics. 2021; 11(12):2212. https://doi.org/10.3390/diagnostics11122212
Chicago/Turabian StylePark, Jong-Uk, Erdenebayar Urtnasan, Sang-Ha Kim, and Kyoung-Joung Lee. 2021. "A Prediction Model of Incident Cardiovascular Disease in Patients with Sleep-Disordered Breathing" Diagnostics 11, no. 12: 2212. https://doi.org/10.3390/diagnostics11122212
APA StylePark, J. -U., Urtnasan, E., Kim, S. -H., & Lee, K. -J. (2021). A Prediction Model of Incident Cardiovascular Disease in Patients with Sleep-Disordered Breathing. Diagnostics, 11(12), 2212. https://doi.org/10.3390/diagnostics11122212