Polyp Detection from Colorectum Images by Using Attentive YOLOv5
Abstract
:1. Introduction
2. Related Works
2.1. Traditional Polyp Detection Algorithm
2.2. Polyp Detection Algorithm Based on Deep Learning
3. Materials and Methods
3.1. Network Configuration
3.2. Dataset
3.3. Input
3.4. Backbone
3.5. Neck
3.6. Attention Mechanism
3.7. Prediction
4. Results
4.1. Polyp Object Detection
4.2. Comparisons with State-of-the-Art Methods
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Maida, M.; Morreale, G.; Sinagra, E.; Ianiro, G.; Margherita, V.; Cipolla, A.C.; Camilleri, S. Quality measures improving endoscopic screening of colorectal cancer: A review of the literature. Expert Rev. Anticancer. Ther. 2019, 19, 223–235. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 145–164. [Google Scholar] [CrossRef] [Green Version]
- Stoffel, E.M.; Murphy, C.C. Epidemiology and Mechanisms of the Increasing Incidence of Colon and Rectal Cancers in Young Adults. Gastroenterology 2020, 158, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Kudo, S.; Mori, Y.; Misawa, M.; Takeda, K.; Kudo, T.; Itoh, H.; Oda, M.; Mori, K. Artificial intelligence and colonoscopy: Current status and future perspectives. Dig. Endosc. 2019, 31, 363–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bibbins-Domingo, K.; Grossman, D.C.; Curry, S.J.; Davidson, K.W.; Epling, J.W.; García, F.A.; Gillman, M.W.; Harper, D.M.; Kemper, A.R.; Krist, A.H.; et al. Screening for colorectal cancer: US Preventive Services Task Force recommendation statement. JAMA 2016, 315, 2564–2575. [Google Scholar] [CrossRef] [PubMed]
- Rex, D.K.; Boland, C.R.; Dominitz, J.A.; Giardiello, F.M.; Johnson, D.A.; Kaltenbach, T.; Levin, T.R.; Lieberman, D.; Robertson, D.J. Colorectal Cancer Screening: Recommendations for Physicians and Patients from the U.S. Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2017, 153, 307–323. [Google Scholar] [CrossRef] [PubMed]
- Brenner, H.; Chang-Claude, J.; Jansen, L.; Knebel, P.; Stock, C.; Hoffmeister, M. Reduced Risk of Colorectal Cancer Up to 10 Years After Screening, Surveillance, or Diagnostic Colonoscopy. Gastroenterology 2014, 146, 709–717. [Google Scholar] [CrossRef] [Green Version]
- Doubeni, C.A.; Corley, D.A.; Quinn, V.P.; Jensen, C.D.; Zauber, A.G.; Goodman, M.; Johnson, J.R.; Mehta, S.J.; Becerra, T.A.; Zhao, W.K.; et al. Effectiveness of screening colonoscopy in reducing the risk of death from right and left colon cancer: A large community-based study. Gut 2018, 67, 291–298. [Google Scholar] [CrossRef]
- Zauber, A.G.; Winawer, S.J.; O’Brien, M.J.; Lansdorp-Vogelaar, I.; van Ballegooijen, M.; Hankey, B.F.; Shi, W.; Bond, J.H.; Schapiro, M.; Panish, J.F.; et al. Colonoscopic Polypectomy and Long-Term Prevention of Colorectal-Cancer Deaths. N. Engl. J. Med. 2012, 366, 687–696. [Google Scholar] [CrossRef]
- Doubeni, C.A.; Weinmann, S.; Adams, K.; Kamineni, A.; Buist, D.S.; Ash, A.S.; Rutter, C.M.; Doria-Rose, V.P.; Corley, D.A.; Greenlee, R.T.; et al. Screening colonoscopy and risk for incident late-stage colorectal cancer diagnosis in average-risk adults: A nested case-control study. Ann. Intern. Med. 2013, 158, 312–320. [Google Scholar] [CrossRef] [Green Version]
- Corley, D.A.; Jensen, C.D.; Marks, A.; Zhao, W.K.; Lee, J.K.; Doubeni, C.; Zauber, A.G.; De Boer, J.; Fireman, B.H.; Schottinger, J.E.; et al. Adenoma Detection Rate and Risk of Colorectal Cancer and Death. N. Engl. J. Med. 2014, 370, 1298–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmud, N.; Cohen, J.; Tsourides, K.; Berzin, T.M. Computer vision and augmented reality in gastrointestinal endoscopy. Gastroenterol. Rep. 2015, 3, 179–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.; Sreenivasan, A.K.; Pecoriello, J.; Liang, P.S. Polyp Detection Rate Correlates Strongly with Adenoma Detection Rate in Trainee Endoscopists. Dig. Dis. Sci. 2020, 65, 2229–2233. [Google Scholar] [CrossRef]
- Le, A.; Salifu, M.O.; McFarlane, I.M. Artificial Intelligence in Colorectal Polyp Detection and Characterization. Int. J. Clin. Res. Trials 2021, 6, 157. [Google Scholar] [CrossRef]
- Antonelli, G.; Badalamenti, M.; Hassan, C.; Repici, A. Impact of artificial intelligence on colorectal polyp detection. Best Pr. Res. Clin. Gastroenterol. 2020, 52–53, 101713. [Google Scholar] [CrossRef]
- Bernal, J.; Tudela, Y.; Riera, M.; Sánchez, F.J. Polyp Detection in Colonoscopy Videos. In Computer-Aided Analysis of Gastrointestinal Videos; Springer: Cham, Switzerland, 2021; pp. 163–169. [Google Scholar] [CrossRef]
- Ishita, B.; Daniela, V.; Henriette, J.; Magnus, L.; Mette, K.; Øyvind, H.; Masashi, M.; Michael, B.; Yuichi, M. Artificial intelligence for polyp detection during colonoscopy: A systematic review and meta-analysis. Endoscopy 2021, 53, 277–284. [Google Scholar] [CrossRef]
- Sinonquel, P.; Eelbode, T.; Hassan, C.; Antonelli, G.; Filosofi, F.; Neumann, H.; Demedts, I.; Roelandt, P.; Maes, F.; Bisschops, R. Real-time unblinding for validation of a new CADe tool for colorectal polyp detection. Gut 2021, 70, 641–643. [Google Scholar] [CrossRef]
- Shen, P.; Li, W.Z.; Li, J.X.; Pei, Z.C.; Luo, Y.X.; Mu, J.B.; Li, W.; Wang, X.M. Real-time use of a computer-aided system for polyp detection during colonoscopy, an ambispective study. J. Dig. Dis. 2021, 22, 256–262. [Google Scholar] [CrossRef]
- Krishnan, S.; Yang, X.; Chan, K.; Kumar, S.; Goh, P. Intestinal abnormality detection from endoscopic images. In Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1 November 1998; Volume 2, pp. 895–898. [Google Scholar] [CrossRef]
- Kang, J.; Doraiswami, R. Real-time image processing system for endoscopic applications. In Proceedings of the IEEE Canadian Conference on Electrical and Computer Engineering, Montreal, QC, Canada, 4–7 May 2003; Volume 3, pp. 1469–1472. [Google Scholar] [CrossRef]
- Bernal, J.; Sánchez, F.J.; Fernández-Esparrach, M.G.; Gil, D.; Rodríguez, C.; Vilariño, F. WM-DOVA maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput. Med. Imaging Graph. 2015, 43, 99–111. [Google Scholar] [CrossRef]
- Wang, P.; Krishnan, S.; Kugean, C.; Tjoa, M. Classification of endoscopic images based on texture and neural network. In Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Istanbul, Turkey, 25–28 October 2001; Volume 4, pp. 3691–3695. [Google Scholar] [CrossRef]
- Tjoa, M.P.; Krishnan, S.M. Feature extraction for the analysis of colon status from the endoscopic images. BioMed. Eng. Online 2003, 2, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luis, A.; Casteleiro, J.; Nobre, N. Polyp detection in endoscopic video using svms. In Proceedings of the 11th European Conference on Principles and Practice of Knowledge Discovery in Databases, Warsaw, Poland, 17–21 September 2007; pp. 358–365. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Chan, K.L.; Krishnan, S.M. Learning a multi-size patch-based hybrid kernel machine ensemble for abnormal region detection in colonoscopic images. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 21–23 September 2005; Volume 2. [Google Scholar] [CrossRef]
- Qadir, H.A.; Shin, Y.; Solhusvik, J.; Bergsland, J.; Aabakken, L.; Balasingham, I. Toward real-time polyp detection using fully CNNs for 2D Gaussian shapes prediction. Med. Image Anal. 2020, 68, 101897. [Google Scholar] [CrossRef] [PubMed]
- Tashk, A.; Nadimi, E. An innovative polyp detection method from colon capsule endoscopy images based on a novel combination of RCNN and DRLSE. In Proceedings of the 2020 IEEE Congress on Evolutionary Computation (CEC), Glasgow, UK, 19–24 July 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, Y.; Liu, M.; Lai, Y.; Liu, P.; Wang, Z.; Xing, T.; Huang, Y.; Li, Y.; Li, A.; et al. Artificial Intelligence-Assisted Colonoscopy for Detection of Colon Polyps: A Prospective, Randomized Cohort Study. J. Gastrointest. Surg. 2020, 25, 2011–2018. [Google Scholar] [CrossRef]
- Yang, X.; Wei, Q.; Zhang, C.; Zhou, K.; Kong, L.; Jiang, W. Colon Polyp Detection and Segmentation Based on Improved MRCNN. IEEE Trans. Instrum. Meas. 2020, 70, 4501710. [Google Scholar] [CrossRef]
- Li, W.; Yang, C.; Liu, J.; Liu, X.; Guo, X. Joint Polyp Detection and Segmentation with Heterogeneous Endoscopic Data. In 3rd International Workshop and Challenge on Computer Vision in Endoscopy (EndoCV 2021): Co-located with the 17th IEEE International Symposium on Biomedical Imaging (ISBI 2021); CEUR Workshop Proceedings; CEUR-WS Team: Acropolis, Francs, 2021; pp. 69–79. [Google Scholar]
- Wang, W.; Tian, J.; Zhang, C.; Luo, Y.; Wang, X.; Li, J. An improved deep learning approach and its applications on colonic polyp images detection. BMC Med. Imaging 2020, 20, 83. [Google Scholar] [CrossRef]
- Haj-Manouchehri, A.; Mohammadi, H.M. Polyp detection using CNNs in colonoscopy video. IET Comput. Vis. 2020, 14, 241–247. [Google Scholar] [CrossRef]
- Patel, K.; Li, K.; Tao, K.; Wang, Q.; Bansal, A.; Rastogi, A.; Wang, G. A comparative study on polyp classification using convolutional neural networks. PLoS ONE 2020, 15, e0236452. [Google Scholar] [CrossRef] [PubMed]
- Taş, M.; Yılmaz, B. Super resolution convolutional neural network based pre-processing for automatic polyp detection in colonoscopy images. Comput. Electr. Eng. 2021, 90, 106959. [Google Scholar] [CrossRef]
- Tang, C.-P.; Chen, K.-H.; Lin, T.-L. Computer-Aided Colon Polyp Detection on High Resolution Colonoscopy Using Transfer Learning Techniques. Sensors 2021, 21, 5315. [Google Scholar] [CrossRef]
- Shen, Z.; Lin, C.; Zheng, S. COTR: Convolution in Transformer Network for End to End Polyp Detection. arXiv 2021, arXiv:2105.10925. [Google Scholar]
- Liew, W.S.; Tang, T.B.; Lin, C.-H.; Lu, C.-K. Automatic colonic polyp detection using integration of modified deep residual convolutional neural network and ensemble learning approaches. Comput. Methods Programs Biomed. 2021, 206, 106114. [Google Scholar] [CrossRef]
- Mulliqi, N.; Yildirim, S.; Mohammed, A.; Ahmedi, L.; Wang, H.; Elezaj, O.; Hovde, O. The Importance of Skip Connections in Encoder-Decoder Architectures for Colorectal Polyp Detection. In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, 25–28 October 2020; pp. 380–384. [Google Scholar] [CrossRef]
- Mostafiz, R.; Hasan, M.; Hossain, I.; Rahman, M.M. An intelligent system for gastrointestinal polyp detection in endoscopic video using fusion of bidimensional empirical mode decomposition and convolutional neural network features. Int. J. Imaging Syst. Technol. 2020, 30, 224–233. [Google Scholar] [CrossRef]
- Hasan, M.M.; Islam, N.; Rahman, M.M. Gastrointestinal polyp detection through a fusion of contourlet transform and Neural features. J. King Saud Univ. Comput. Inf. Sci. 2020. [Google Scholar] [CrossRef]
- Bochkovskiy, A.; Wang, C.Y.; Liao, H.Y.M. Yolov4: Optimal speed and accuracy of object detection. arXiv 2020, arXiv:2004.10934. [Google Scholar]
- Guo, Z.; Zhang, R.; Li, Q.; Liu, X.; Nemoto, D.; Togashi, K.; Isuru Niroshanaet, S.M.; Shi, Y.; Zhu, X. Reduce false-positive rate by active learning for automatic polyp detection in colonoscopy videos. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 1655–1658. [Google Scholar] [CrossRef]
- Cao, C.; Wang, R.; Yu, Y.; Zhang, H.; Yu, Y.; Sun, C. Gastric polyp detection in gastroscopic images using deep neural network. PLoS ONE 2021, 16, e0250632. [Google Scholar] [CrossRef]
- Pacal, I.; Karaboga, D. A robust real-time deep learning based automatic polyp detection system. Comput. Biol. Med. 2021, 134, 104519. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Qi, L.; Qin, H.; Shi, J.; Jia, J. Path aggregation network for instance segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 8759–8768. [Google Scholar] [CrossRef] [Green Version]
Kvasir-SEG Dataset | WCY Dataset | |||||||
---|---|---|---|---|---|---|---|---|
Methods | Precision | Recall | F-score | Time(s) | Precision | Recall | F-score | Time(s) |
CNN | 0.879 | 0.871 | 0.875 | 1.861 | 0.908 | 0.889 | 0.898 | 2.176 |
R-CNN | 0.910 | 0.887 | 0.898 | 1.175 | 0.911 | 0.892 | 0.901 | 1.298 |
Faster R-CNN | 0.914 | 0.896 | 0.905 | 0.382 | 0.916 | 0.897 | 0.906 | 0.374 |
Yolov4 | 0.883 | 0.880 | 0.881 | 0.032 | 0.895 | 0.876 | 0.885 | 0.037 |
Ours | 0.915 | 0.899 | 0.907 | 0.028 | 0.913 | 0.921 | 0.917 | 0.030 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan, J.; Chen, B.; Yu, Y. Polyp Detection from Colorectum Images by Using Attentive YOLOv5. Diagnostics 2021, 11, 2264. https://doi.org/10.3390/diagnostics11122264
Wan J, Chen B, Yu Y. Polyp Detection from Colorectum Images by Using Attentive YOLOv5. Diagnostics. 2021; 11(12):2264. https://doi.org/10.3390/diagnostics11122264
Chicago/Turabian StyleWan, Jingjing, Bolun Chen, and Yongtao Yu. 2021. "Polyp Detection from Colorectum Images by Using Attentive YOLOv5" Diagnostics 11, no. 12: 2264. https://doi.org/10.3390/diagnostics11122264
APA StyleWan, J., Chen, B., & Yu, Y. (2021). Polyp Detection from Colorectum Images by Using Attentive YOLOv5. Diagnostics, 11(12), 2264. https://doi.org/10.3390/diagnostics11122264