Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overall Process
2.2. Data Collection
2.3. Data Imputation
2.4. Data Augmentation
2.5. Feature Ranking
2.6. ML Model Development
2.7. Statistical Analysis
3. Results
3.1. Preparing Datasets
3.2. Performance Evaluation of ML Models
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- International Diabetes Federation. “IDF Diabetes Atlas Ninth.” Dunia: IDF (2019). Available online: https://www.idf.org/e-library/welcome.html (accessed on 1 June 2021).
- Haque, F.; Reaz, M.B.I.; Chowdhury, M.; Srivastava, G.; Ali, S.H.M.; Bakar, A.; Bhuiyan, M. Performance Analysis of Conventional Machine Learning Algorithms for Diabetic Sensorimotor Polyneuropathy Severity Classification. Diagnostics 2021, 11, 801. [Google Scholar] [CrossRef] [PubMed]
- Roglic, G. WHO Global report on diabetes: A summary. Int. J. Noncommun. Dis. 2016, 1, 3. [Google Scholar] [CrossRef]
- Costacou, T.; Orchard, T.J. Cumulative Kidney Complication Risk by 50 Years of Type 1 Diabetes: The Effects of Sex, Age, and Calendar Year at Onset. Diabetes Care 2017, 41, 426–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saran, R.; Robinson, B.; Abbott, K.C.; Agodoa, L.Y.; Albertus, P.; Ayanian, J.; Balkrishnan, R.; Bragg-Gresham, J.; Cao, J.; Chen, J.L.T.; et al. US Renal Data System 2016 Annual Data Report: Epidemiology of Kidney Disease in the United States. Am. J. Kidney Dis. 2017, 69, A7–A8. [Google Scholar] [CrossRef] [PubMed]
- Colombo, M.; McGurnaghan, S.J.; Bell, S.; MacKenzie, F.; Patrick, A.W.; Petrie, J.R.; McKnight, J.A.; MacRury, S.; Traynor, J.; Metcalfe, W.; et al. Predicting renal disease progression in a large contemporary cohort with type 1 diabetes mellitus. Diabetologia 2020, 63, 636–647. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- LeCaire, T.J.; Klein, B.E.; Howard, K.P.; Lee, K.E.; Klein, R. Risk for End-Stage Renal Disease Over 25 Years in the Population-Based WESDR Cohort. Diabetes Care 2013, 37, 381–388. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vistisen, D.; Andersen, G.S.; Hulman, A.; McGurnaghan, S.; Colhoun, H.M.; Henriksen, J.E.; Thomsen, R.W.; Persson, F.; Rossing, P.; Jørgensen, M.E. 1615-P: Predicting End-Stage Kidney Disease in Type 1 Diabetes. Diabetes 2020, 69, 1615. [Google Scholar] [CrossRef]
- Helve, J.; Sund, R.; Arffman, M.; Harjutsalo, V.; Groop, P.-H.; Grönhagen-Riska, C.; Finne, P. Incidence of End-Stage Renal Disease in Patients With Type 1 Diabetes. Diabetes Care 2017, 41, 434–439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webster, A.C.; Nagler, E.V.; Morton, R.L.; Masson, P. Chronic Kidney Disease. Lancet 2017, 389, 1238–1252. [Google Scholar] [CrossRef]
- Levey, A.S.; Becker, C.; Inker, L.A. Glomerular Filtration Rate and Albuminuria for Detection and Staging of Acute and Chronic Kidney Disease in Adults. JAMA 2015, 313, 837–846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Kidney Disease: Improving Global Outcomes (KDIGO) CKD Evaluation and 461 Management. Available online: https://kdigo.org/guidelines/ckd-evaluation-and-management/ (accessed on 5 June 2021).
- Segal, Z.; Kalifa, D.; Radinsky, K.; Ehrenberg, B.; Elad, G.; Maor, G.; Lewis, M.; Tibi, M.; Korn, L.; Koren, G. Machine learning algorithm for early detection of end-stage renal disease. BMC Nephrol. 2020, 21, 518. [Google Scholar] [CrossRef] [PubMed]
- Cassia, M.A.; Pozzi, F.E.; Bascapè, S.; Saggiante, L.; Daminelli, G.; Cirelli, C.; Andi, P.T.D.; Elli, M.; Gallieni, M. Proteinuria and Albuminuria at Point of Care. Nephrol. Point Care 2016, 2, e8–e16. [Google Scholar] [CrossRef] [Green Version]
- National Institute for Health and Care Excellence (NICE). Chronic Kidney Disease: Assessment and Management NICE Guideline. 2021. Available online: https://www.nice.org.uk/guidance/ng203 (accessed on 5 June 2021).
- Haque, F.; Reaz, M.B.I.; Chowdhury, M.E.H.; Hashim, F.H.; Arsad, N.; Ali, S.H.M. Diabetic Sensorimotor Polyneuropathy Severity Classification Using Adaptive Neuro Fuzzy Inference System. IEEE Access 2021, 9, 7618–7631. [Google Scholar] [CrossRef]
- Islam, J.; Ahmad, S.; Haque, F.; Reaz, M.B.I.; Bhuiyan, M.A.S.; Islam, R. A Novel Signal Normalization Approach to Improve the Force Invariant Myoelectric Pattern Recognition of Transradial Amputees. IEEE Access 2021, 9, 79853–79868. [Google Scholar] [CrossRef]
- Islam, J.; Ahmad, S.; Haque, F.; Reaz, M.; Bhuiyan, M. Islam Force-Invariant Improved Feature Extraction Method for Upper-Limb Prostheses of Transradial Amputees. Diagnostics 2021, 11, 843. [Google Scholar] [CrossRef] [PubMed]
- Dagliati, A.; Marini, S.; Sacchi, L.; Cogni, G.; Teliti, M.; Tibollo, V.; De Cata, P.; Chiovato, L.; Bellazzi, R. Machine Learning Methods to Predict Diabetes Complications. J. Diabetes Sci. Technol. 2017, 12, 295–302. [Google Scholar] [CrossRef]
- Xiao, J.; Ding, R.; Xu, X.; Guan, H.; Feng, X.; Sun, T.; Zhu, S.; Ye, Z. Comparison and development of machine learning tools in the prediction of chronic kidney disease progression. J. Transl. Med. 2019, 17, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, B.; Cho, H.; Kim, J.; Kil Kwon, S.; Hong, S.; Lee, C.; Kim, T.; Park, M.S.; Hong, S.; Heo, T.-Y. Comparison between Statistical Models and Machine Learning Methods on Classification for Highly Imbalanced Multiclass Kidney Data. Diagnostics 2020, 10, 415. [Google Scholar] [CrossRef]
- Makino, M.; Ono, M.; Itoko, T.; Katsuki, T.; Koseki, A.; Kudo, M.; Haida, K.; Kuroda, J.; Yanagiya, R.; Suzuki, A. Artificial Intelligence Predicts Progress of Diabetic Kidney Disease-Novel Prediction Model Construction with Big Data Machine Learning. Diabetes 2018, 67, 539. [Google Scholar] [CrossRef]
- Low, S.; Lim, S.C.; Zhang, X.; Zhou, S.; Yeoh, L.Y.; Liu, Y.L.; Tavintharan, S.; Sum, C.F. Development and validation of a predictive model for Chronic Kidney Disease progression in Type 2 Diabetes Mellitus based on a 13-year study in Singapore. Diabetes Res. Clin. Pract. 2017, 123, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Chien, K.-L.; Lin, H.-J.; Lee, B.-C.; Hsu, H.-C.; Lee, Y.-T.; Chen, M.-F. A Prediction Model for the Risk of Incident Chronic Kidney Disease. Am. J. Med. 2010, 123, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Dunkler, D.; Gao, P.; Lee, S.F.; Heinze, G.; Clase, C.M.; Tobe, S.; Teo, K.; Gerstein, H.; Mann, J.F.; Oberbauer, R. Risk Prediction for Early CKD in Type 2 Diabetes. Clin. J. Am. Soc. Nephrol. 2015, 10, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Aspriello, S.D.; Zizzi, A.; Tirabassi, G.; Buldreghini, E.; Biscotti, T.; Faloia, E.; Stramazzotti, D.; Boscaro, M.; Piemontese, M. Diabetes mellitus-associated periodontitis: Differences between type 1 and type 2 diabetes mellitus. J. Periodontal Res. 2010, 46, 164–169. [Google Scholar] [CrossRef]
- Lee, Y.-B.; Han, K.; Kim, B.; Jun, J.E.; Lee, S.-E.; Ahn, J.; Kim, G.; Jin, S.-M.; Kim, J.H. Risk of end-stage renal disease from chronic kidney disease defined by decreased glomerular filtration rate in type 1 diabetes: A comparison with type 2 diabetes and the effect of metabolic syndrome. Diabetes Metab. Res. Rev. 2019, 35, e3197. [Google Scholar] [CrossRef] [PubMed]
- Kristófi, R.; Bodegard, J.; Norhammar, A.; Thuresson, M.; Nathanson, D.; Nyström, T.; Birkeland, K.I.; Eriksson, J.W. Cardiovascular and Renal Disease Burden in Type 1 Compared With Type 2 Diabetes: A Two-Country Nationwide Observational Study. Diabetes Care 2021, 44, 1211–1218. [Google Scholar] [CrossRef] [PubMed]
- National Kidney Foundation. “ACR”. 2021. Available online: https://www.kidney.org/kidneydisease/siemens_hcp_acr (accessed on 9 June 2021).
- Epidemiology of Diabetes Interventions and Complications (EDIC). Design, implementation, and preliminary results of a long-term follow-up of the Diabetes Control and Complications Trial cohort. Diabetes Care 1999, 22, 99–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The DCCT/EDIC Research Group. Intensive Diabetes Therapy and Glomerular Filtration Rate in Type 1 Diabetes. N. Engl. J. Med. 2011, 365, 2366–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK). Epidemiology of Diabetes Interventions and Complications (EDIC). 2021. Available online: https://www.clinicaltrials.gov/ct2/show/NCT00360893 (accessed on 10 June 2021).
- Molitch, M.E.; Steffes, M.; Sun, W.; Rutledge, B.; Cleary, P.; de Boer, I.H.; Zinman, B.; Lachin, J. Development and Progression of Renal Insufficiency With and Without Albuminuria in Adults With Type 1 Diabetes in the Diabetes Control and Complications Trial and the Epidemiology of Diabetes Interventions and Complications Study. Diabetes Care 2010, 33, 1536–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabiny, D.L.; Ertingshausen, G. Automated Reaction-Rate Method for Determination of Serum Creatinine with the CentrifiChem. Clin. Chem. 1971, 17, 696–700. [Google Scholar] [CrossRef]
- Silveiro, S.P.; Araújo, G.N.; Ferreira, M.N.; Souza, F.D.; Yamaguchi, H.M.; Camargo, E.G. Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) Equation Pronouncedly Underestimates Glomerular Filtration Rate in Type 2 Diabetes: Figure. Diabetes Care 2011, 34, 2353–2355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perkins, B.A.; Bebu, I.; de Boer, I.H.; Molitch, M.; Tamborlane, W.; Lorenzi, G.; Herman, W.; White, N.H.; Pop-Busui, R.; Paterson, A.D.; et al. Risk Factors for Kidney Disease in Type 1 Diabetes. Diabetes Care 2019, 42, 883–890. [Google Scholar] [CrossRef] [Green Version]
- De Boer, I.H.; Rue, T.C.; Cleary, P.A.; Lachin, J.; Molitch, M.E.; Steffes, M.W.; Sun, W.; Zinman, B.; Brunzell, J.D. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Study Research Group. Long-Term Renal Outcomes of Patients with Type 1 Diabetes Mellitus and Microalbuminuria: An Analysis of the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Cohort Microalbuminuria Outcomes in Type 1 Diabetes. Arch. Intern. Med. 2011, 171, 412–420. [Google Scholar] [CrossRef]
- Radcliffe, N.J.; Seah, J.M.; Clarke, M.; MacIsaac, R.J.; Jerums, G.; Ekinci, E.I. Clinical predictive factors in diabetic kidney disease progression. J. Diabetes Investig. 2016, 8, 6–18. [Google Scholar] [CrossRef]
- Tangri, N.; Kitsios, G.D.; Inker, L.A.; Griffith, J.; Naimark, D.M.; Walker, S.; Rigatto, C.; Uhlig, K.; Kent, D.M.; Levey, A.S. Risk Prediction Models for Patients With Chronic Kidney Disease. Ann. Intern. Med. 2013, 158, 596–603. [Google Scholar] [CrossRef]
- Papadopoulou-Marketou, N.; Chrousos, G.P.; Kanaka-Gantenbein, C. Diabetic nephropathy in type 1 diabetes: A review of early natural history, pathogenesis, and diagnosis. Diabetes Metab. Res. Rev. 2016, 33, e2841. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Zhang, J. New Machine Learning Algorithm: Random Forest. In Information Computing and Applications; Springer: Berlin/Heidelberg, Germany, 2012; pp. 246–252. [Google Scholar]
- Peterson, L.E. K-nearest neighbor. Scholarpedia 2009, 4, 1883. [Google Scholar] [CrossRef]
- Azur, M.J.; Stuart, E.; Frangakis, C.; Leaf, P.J. Multiple imputation by chained equations: What is it and how does it work? Int. J. Methods Psychiatr. Res. 2011, 20, 40–49. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Goel, G.; Maguire, L.; Li, Y.; McLoone, S. Evaluation of Sampling Methods for Learning from Imbalanced Data. In Proceedings of the Intelligent Computing Theories, Nanning, China, 28–31 July 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 392–401. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar] [CrossRef] [Green Version]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Scikit-Learn: Machine Learning in Python—Scikit-Learn 0.24.2 Documentation. Available online: https://scikit-learn.org/stable/index.html (accessed on 29 June 2021).
- Haque, F.; Reaz, M.B.I.; Chowdhury, M.; Ali, S.H.M.; Bakar, A.; Rahman, T.; Kobashi, S.; Dhawale, C.; Bhuiyan, M. A nomogram-based diabetic sensorimotor polyneuropathy severity prediction using Michigan neuropathy screening instrumentations. Comput. Biol. Med. 2021, 139, 104954. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Yu, C.; Chen, R.; Li, J.; Li, J. Novel ionic liquid-type Gemini surfactants: Synthesis, surface property and antimicrobial activity. Colloids Surf. A Physicochem. Eng. Asp. 2012, 395, 116–124. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, C.; Zhe, W.; Niu, X.; Wang, X. SMOTETomek-Based Resampling for Personality Recognition. IEEE Access 2019, 7, 129678–129689. [Google Scholar] [CrossRef]
N = 1375 | Mean | SEM | Min | Max | 95% Confidence Interval | Pearson Correlation | ||
---|---|---|---|---|---|---|---|---|
Lower Limit | Upper Limit | r | p | |||||
Age (years) | 35.093 ± 6.98 | 0.18 | 19.00 | 57.00 | 34.72 | 35.45 | 0.039 | 0.13 |
BMI (kg/m2) | 26.09 ± 4.04 | 0.11 | 16.62 | 66.01 | 25.88 | 26.30 | −0.02 | 0.33 |
Diabetic duration (years) | 13.64 ± 4.94 | 0.13 | 6.00 | 28.00 | 13.38 | 13.90 | 0.08 | <0.05 |
Hba1c (%) | 8.14 ± 1.39 | 0.03 | 4.40 | 15.10 | 8.07 | 8.22 | 0.03 | 0.25 |
HDL cholesterol (mg/dL) | 52.50 ± 13.06 | 0.35 | 25.00 | 103.00 | 51.81 | 53.18 | −0.03 | 0.18 |
LDL cholesterol (mg/dL) | 114.02 ± 30.52 | 0.81 | 26.00 | 310.00 | 112.42 | 115.62 | 0.03 | 0.14 |
Total cholesterol (mg/dL) | 183.71 ± 35.87 | 0.96 | 85.00 | 444.00 | 181.83 | 185.59 | 0.04 | 0.11 |
Triglycerides (mg/dL) | 86.79 ± 64.30 | 1.72 | 17.00 | 1110.00 | 83.42 | 90.16 | 0.05 | <0.05 |
Systolic BP (mm Hg) | 117.35 ± 12.61 | 0.33 | 82.00 | 172.00 | 116.69 | 118.01 | 0.07 | <0.05 |
Diastolic BP (mm Hg) | 74.99 ± 9.27 | 0.25 | 40.00 | 116.00 | 74.50 | 75.47 | 0.04 | 0.07 |
Mean BP (mm Hg) | 89.11 ± 9.36 | 0.25 | 59.33 | 134.00 | 88.62 | 89.60 | 0.06 | <0.05 |
N = 1375 | Number of Positive Outcomes | Number of Negative Outcomes | Pearson Correlation | |
---|---|---|---|---|
r | p | |||
Female | 659 | 716 | −0.01 | 0.47 |
ACE inhibitors | 87 | 1288 | 0.20 | 1.44 |
Hypertension | 228 | 1147 | 0.11 | 1.10 |
Hypercholesterolemia | 402 | 973 | 0.03 | 0.26 |
Smoking | 273 | 1102 | −0.01 | 0.84 |
Drinking | 486 | 889 | −0.02 | 0.33 |
Daily insulin dose | 255 | 1120 | 0.00 | 0.90 |
Antihypertensive medicine | 128 | 1247 | 0.16 | 5.04 |
Algorithm | Data Imputation | Feature Selection Models | Number of Features | Sensitivity (Recall) | Specificity | Accuracy | Precision | F1_Score | Non-CKD | CKD | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
True Negative | False Positive | False Negative | True Positive | |||||||||
LR | KNN | XGB | 11 | 0.90 (±0.02) | 0.76 (±0.04) | 0.83 (±0.01) | 0.79 (±0.03) | 0.84 (±0.01) | 2124 | 657 | 290 | 2500 |
RF | 16 | 0.89 (±0.03) | 0.76 (±0.05) | 0.83 (±0.01) | 0.79 (±0.03) | 0.84 (±0.01) | 2115 | 666 | 300 | 2490 | ||
Extra Tree | 8 | 0.93 (±0.04) | 0.72 (±0.04) | 0.83 (±0.01) | 0.77 (±0.02) | 0.84 (±0.01) | 1999 | 782 | 187 | 2603 | ||
KNN | KNN | XGB | 17 | 0.99 (±0.01) | 0.80 (±0.04) | 0.90 (±0.02) | 0.83 (±0.03) | 0.91 (±0.01) | 2229 | 553 | 24 | 2766 |
RF | 9 | 0.99 (±0.01) | 0.81 (±0.03) | 0.90 (±0.02) | 0.84 (±0.02) | 0.91 (±0.01) | 2242 | 540 | 32 | 2758 | ||
Extra Tree | 9 | 0.99 (±0.02) | 0.81 (±0.03) | 0.90 (±0.01) | 0.84 (±0.02) | 0.91 (±0.01) | 2240 | 542 | 33 | 2757 | ||
GNB | KNN | XGB | 15 | 0.93 (±0.03) | 0.75 (±0.05) | 0.84 (±0.02) | 0.79 (±0.03) | 0.85 (±0.01) | 2074 | 708 | 203 | 2587 |
RF | 16 | 0.91 (±0.03) | 0.75 (±0.04) | 0.83 (±0.01) | 0.78 (±0.02) | 0.84 (±0.01) | 2083 | 699 | 264 | 2526 | ||
Extra Tree | 17 | 0.90 (±0.02) | 0.75 (±0.04) | 0.82 (±0.02) | 0.78 (±0.02) | 0.84 (±0.01) | 2085 | 697 | 289 | 2501 | ||
SVM | KNN | XGB | 9 | 0.88 (±0.06) | 0.94 (±0.01) | 0.91 (±0.02) | 0.93 (±0.01) | 0.90 (±0.03) | 2603 | 179 | 335 | 2455 |
RF | 4 | 0.92 (±0.04) | 0.82 (±0.05) | 0.87 (±0.01) | 0.84 (±0.03) | 0.87 (±0.01) | 2284 | 498 | 233 | 2557 | ||
Extra Tree | 5 | 0.92 (±0.03) | 0.83 (±0.04) | 0.88 (±0.01) | 0.84 (±0.03) | 0.88 (±0.01) | 2301 | 481 | 210 | 2580 | ||
SGD | KNN | XGB | 4 | 0.96 (±0.01) | 0.72 (±0.28) | 0.81 (±0.02) | 0.74 (±0.02) | 0.83 (±0.01) | 1822 | 961 | 104 | 2686 |
RF | 2 | 0.96 (±0.01) | 0.69 (±0.06) | 0.80 (±0.02) | 0.60 (±0.60) | 0.83 (±0.03) | 1892 | 891 | 205 | 2585 | ||
Extra Tree | 3 | 0.96 (±0.01) | 0.65 (±0.03) | 0.81 (±0.02) | 0.74 (±0.02) | 0.83 (±0.01) | 2013 | 770 | 642 | 2148 | ||
DT | KNN | XGB | 17 | 0.94 (±0.03) | 0.91 (±0.01) | 0.93 (±0.02) | 0.91 (±0.02) | 0.93 (±0.02) | 2533 | 249 | 153 | 2637 |
RF | 15 | 0.94 (±0.05) | 0.90 (±0.02) | 0.92 (±0.03) | 0.90 (±0.02) | 0.92 (±0.03) | 2504 | 278 | 170 | 2620 | ||
Extra Tree | 10 | 0.93 (±0.09) | 0.91 (±0.03) | 0.92 (±0.04) | 0.91 (±0.03) | 0.92 (±0.05) | 2525 | 257 | 212 | 2578 | ||
GB | KNN | XGB | 15 | 0.93 (±0.07) | 0.87 (±0.02) | 0.90 (±0.04) | 0.87 (±0.01) | 0.90 (±0.04) | 2411 | 371 | 207 | 2583 |
RF | 11 | 0.93 (±0.06) | 0.86 (±0.02) | 0.90 (±0.02) | 0.87 (±0.01) | 0.90 (±0.03) | 2403 | 379 | 198 | 2592 | ||
Extra Tree | 9 | 0.93 (±0.08) | 0.86 (±0.02) | 0.90 (±0.03) | 0.87 (±0.02) | 0.90 (±0.04) | 2395 | 387 | 195 | 2595 | ||
RF | KNN | XGB | 11 | 0.98 (±0.01) | 0.93 (±0.01) | 0.96 (±0.01) | 0.94 (±0.01) | 0.96 (±0.01) | 2593 | 189 | 59 | 2731 |
RF | 15 | 0.99 (±0.01) | 0.93 (±0.03) | 0.96 (±0.01) | 0.93 (±0.02) | 0.96 (±0.01) | 2585 | 197 | 40 | 2750 | ||
Extra Tree | 12 | 0.99 (±0.01) | 0.93 (±0.02) | 0.96 (±0.01) | 0.93 (±0.02) | 0.96 (±0.01) | 2588 | 194 | 41 | 2749 | ||
XGB | KNN | XGB | 13 | 0.95 (±0.04) | 0.88 (±0.03) | 0.92 (±0.02) | 0.89 (±0.02) | 0.92 (±0.02) | 2439 | 343 | 127 | 2663 |
RF | 12 | 0.96 (±0.04) | 0.87 (±0.02) | 0.92 (±0.02) | 0.88 (±0.01) | 0.92 (±0.02) | 2432 | 350 | 120 | 2670 | ||
Extra Tree | 10 | 0.96 (±0.03) | 0.87 (±0.02) | 0.92 (±0.02) | 0.88 (±0.01) | 0.92 (±0.02) | 2409 | 373 | 98 | 2692 | ||
Light GBM | KNN | XGB | 12 | 0.96 (±0.16) | 0.94 (±0.04) | 0.95 (±0.06) | 0.95 (±0.03) | 0.95 (±0.07) | 2626 | 157 | 119 | 2671 |
RF | 13 | 0.96 (±0.16) | 0.94 (±0.03) | 0.95 (±0.06) | 0.94 (±0.03) | 0.95 (±0.07) | 2617 | 166 | 125 | 2665 | ||
Extra Tree | 12 | 0.96 (±0.16) | 0.94 (±0.04) | 0.95 (±0.06) | 0.95 (±0.03) | 0.95 (±0.07) | 2626 | 157 | 125 | 2665 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chowdhury, N.H.; Reaz, M.B.I.; Haque, F.; Ahmad, S.; Ali, S.H.M.; A Bakar, A.A.; Bhuiyan, M.A.S. Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients. Diagnostics 2021, 11, 2267. https://doi.org/10.3390/diagnostics11122267
Chowdhury NH, Reaz MBI, Haque F, Ahmad S, Ali SHM, A Bakar AA, Bhuiyan MAS. Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients. Diagnostics. 2021; 11(12):2267. https://doi.org/10.3390/diagnostics11122267
Chicago/Turabian StyleChowdhury, Nakib Hayat, Mamun Bin Ibne Reaz, Fahmida Haque, Shamim Ahmad, Sawal Hamid Md Ali, Ahmad Ashrif A Bakar, and Mohammad Arif Sobhan Bhuiyan. 2021. "Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients" Diagnostics 11, no. 12: 2267. https://doi.org/10.3390/diagnostics11122267
APA StyleChowdhury, N. H., Reaz, M. B. I., Haque, F., Ahmad, S., Ali, S. H. M., A Bakar, A. A., & Bhuiyan, M. A. S. (2021). Performance Analysis of Conventional Machine Learning Algorithms for Identification of Chronic Kidney Disease in Type 1 Diabetes Mellitus Patients. Diagnostics, 11(12), 2267. https://doi.org/10.3390/diagnostics11122267