Role of Single Nucleotide Variants in FSHR, GNRHR, ESR2 and LHCGR Genes in Adolescents with Polycystic Ovary Syndrome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Patient Examination
2.3. Genetic Testing
2.4. Statistical Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.; Andersen, M.; Azziz, R.; et al. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Fertil. Steril. 2018, 110, 364–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Legro, R.; Driscoll, D.; Strauss, J.F.; Fox, J.; Dunaif, A. Evidence for a genetic basis for hyperandrogenemia in polycystic ovary syndrome. Proc. Natl. Acad. Sci. USA 1998, 95, 14956–14960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vink, J.M.; Sadrzadeh, S.; Lambalk, C.B.; Boomsma, D.I. Heritability of Polycystic Ovary Syndrome in a Dutch Twin-Family Study. J. Clin. Endocrinol. Metab. 2006, 91, 2100–2104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hiam, D.; Moreno-Asso, A.; Teede, H.J.; Laven, J.S.; Stepto, N.K.; Moran, L.J.; Gibson-Helm, M. The Genetics of Polycystic Ovary Syndrome: An Overview of Candidate Gene Systematic Reviews and Genome-Wide Association Studies. J. Clin. Med. 2019, 8, 1606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Melo, A.S.; Dias, S.V.; Cavalli, R.D.C.; Cardoso, V.C.; Bettiol, H.; Barbieri, M.A.; Ferriani, R.A.; Vieira, C.S.; Melo, A.S.D. Pathogenesis of polycystic ovary syndrome: Multifactorial assessment from the foetal stage to menopause. Reproduction 2015, 150, R11–R24. [Google Scholar] [CrossRef] [Green Version]
- Unsal, T.; Konac, E.; Yesilkaya, E.; Yilmaz, A.; Bideci, A.; Onen, H.I.; Cinaz, P.; Menevse, A. Genetic polymorphisms of FSHR, CYP17, CYP1A1, CAPN10, INSR, SERPINE1 genes in adolescent girls with polycystic ovary syndrome. J. Assist. Reprod. Genet. 2009, 26, 205–216. [Google Scholar] [CrossRef] [Green Version]
- Doshi, A.; Zaheer, A.; Stiller, M.J. A comparison of current acne grading systems and proposal of a novel system. Int. J. Dermatol. 1997, 36, 416–418. [Google Scholar] [CrossRef]
- World Health Organization. AnthroPlus for Personal Computers. Manual: Software for Assessing Growth of the World’s Children and Adolescents; WHO: Geneva, Switherland, 2009. [Google Scholar]
- Jakimiuk, A.J.; Weitsman, S.R.; Yen, H.-W.; Bogusiewicz, M.; Magoffin, D.A. Estrogen Receptor α and β Expression in Theca and Granulosa Cells from Women with Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2002, 87, 5532–5538. [Google Scholar] [CrossRef] [Green Version]
- Artimani, T.; Saidijam, M.; Aflatoonian, R.; Amiri, I.; Ashrafi, M.; Shabab, N.; Mohammadpour, N.; Mehdizadeh, M. Estrogen and progesterone receptor subtype expression in granulosa cells from women with polycystic ovary syndrome. Gynecol. Endocrinol. 2015, 31, 379–383. [Google Scholar] [CrossRef]
- Douma, Z.; Dallel, M.; Bahia, W.; Ben Salem, A.; Ben Ali, F.H.; Almawi, W.Y.; Lautier, C.; Haydar, S.; Grigorescu, F.; Mahjoub, T. Association of estrogen receptor gene variants (ESR1 and ESR2) with polycystic ovary syndrome in Tunisia. Gene 2020, 741, 144560. [Google Scholar] [CrossRef]
- Sundarrajan, C.; Liao, W.X.; Roy, A.C.; Ng, S.C. Association between Estrogen Receptor-β Gene Polymorphisms and Ovulatory Dysfunctions in Patients with Menstrual Disorders. J. Clin. Endocrinol. Metab. 2001, 86, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Rani, A.; Roy, A. Variation in the ERα and ERβ Genes and Genetic Susceptibility to Polycystic Ovary Syndrome. Fertil. Steril. 2005, 84, S443. [Google Scholar] [CrossRef]
- Valkenburg, O.; Uitterlinden, A.G.; Themmen, A.P.; de Jong, F.H.; Hofman, A.; Fauser, B.C.J.M.; Laven, J.S.E. Genetic polymorphisms of the glucocorticoid receptor may affect the phenotype of women with anovulatory polycystic ovary syndrome. Hum. Reprod. 2011, 26, 2902–2911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nectaria, X.; Leandros, L.; Ioannis, G.; Agathocles, T. The importance of ERα and ERβgene polymorphisms in PCOS. Gynecol. Endocrinol. 2012, 28, 505–508. [Google Scholar] [CrossRef]
- Kim, J.J.; Choi, Y.M.; Choung, S.H.; Yoon, S.H.; Lee, G.H.; Moon, S.Y. Estrogen receptor beta gene +1730 G/A polymorphism in women with polycystic ovary syndrome. Fertil. Steril. 2010, 93, 1942–1947. [Google Scholar] [CrossRef]
- Liaqat, I.; Jahan, N.; Krikun, G.; Taylor, H.S. Genetic Polymorphisms in Pakistani Women with Polycystic Ovary Syndrome. Reprod. Sci. 2014, 22, 347–357. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.; Sóter, M.; Sales, M.; Candido, A.; Reis, F.; Silva, I.; Sousa, M.; Ferreira, C.; Gomes, K. Estrogen receptor αlpha gene (ESR1) PvuII and XbaI polymorphisms are associated to metabolic and proinflammatory factors in polycystic ovary syndrome. Gene 2015, 560, 44–49. [Google Scholar] [CrossRef]
- Qiao, J.; Han, B. Diseases caused by mutations in luteinizing hormone/chorionic gonadotropin receptor. Prog. Mol. Biol. Transl. Sci. 2019, 161, 69–89. [Google Scholar]
- Owens, L.A.; Kristensen, S.G.; Lerner, A.; Christopoulos, G.; Lavery, S.; Hanyaloglu, A.C.; Hardy, K.; Andersen, C.Y.; Franks, S. Gene Expression in Granulosa Cells from Small Antral Follicles from Women with or without Polycystic Ovaries. J. Clin. Endocrinol. Metab. 2019, 104, 6182–6192. [Google Scholar] [CrossRef] [Green Version]
- Valkenburg, O.; Uitterlinden, A.; Piersma, D.; Hofman, A.; Themmen, A.; de Jong, F.; Fauser, B.; Laven, J. Genetic polymorphisms of GnRH and gonadotrophic hormone receptors affect the phenotype of polycystic ovary syndrome. Hum. Reprod. 2009, 24, 2014–2022. [Google Scholar] [CrossRef] [Green Version]
- Zou, J.; Wu, D.; Liu, Y.; Tan, S. Association of luteinizing hormone/choriogonadotropin receptor gene polymorphisms with polycystic ovary syndrome risk: A meta-analysis. Gynecol. Endocrinol. 2018, 35, 81–85. [Google Scholar] [CrossRef]
- Thathapudi, S.; Kodati, V.; Erukkambattu, J.; Addepally, U.; Qurratulain, H. Association of Luteinizing Hormone Chorionic Gonadotropin Receptor Gene Polymorphism (rs2293275) with Polycystic Ovarian Syndrome. Genet. Test. Mol. Biomark. 2015, 19, 128–132. [Google Scholar] [CrossRef] [Green Version]
- El-Shal, A.S.; Zidan, H.E.; Rashad, N.M.; Abdelaziz, A.M.; Harira, M.M. Association between genes encoding components of the Leutinizing hormone/Luteinizing hormone-choriogonadotrophin receptor pathway and polycystic ovary syndrome in Egyptian women. IUBMB Life 2016, 68, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Capalbo, A.; Sagnella, F.; Apa, R.; Fulghesu, A.M.; Lanzone, A.; Morciano, A.; Farcomeni, A.; Gangale, M.F.; Moro, F.; Martinez, D.; et al. The 312N variant of the luteinizing hormone/choriogonadotropin receptor gene (LHCGR) confers up to 2·7-fold increased risk of polycystic ovary syndrome in a Sardinian population. Clin. Endocrinol. 2012, 77, 113–119. [Google Scholar] [CrossRef]
- Mohiyiddeen, L.; Salim, S.; Mulugeta, B.; McBurney, H.; Newman, W.G.; Pemberton, P.; Nardo, L.G. PCOS and peripheral AMH levels in relation to FSH receptor gene single nucleotide polymorphisms. Gynecol. Endocrinol. 2012, 28, 375–377. [Google Scholar] [CrossRef] [PubMed]
- Laven, J.S.; Mulders, A.G.; Suryandari, D.A.; Gromoll, J.; Nieschlag, E.; Fauser, B.C.; Simoni, M. Follicle-stimulating hormone receptor polymorphisms in women with normogonadotropic anovulatory infertility. Fertil. Steril. 2003, 80, 986–992. [Google Scholar] [CrossRef]
- Dolfin, E.; Guani, B.; Lussiana, C.; Mari, C.; Restagno, G.; Revelli, A. FSH-receptor Ala307Thr polymorphism is associated to polycystic ovary syndrome and to a higher responsiveness to exogenous FSH in Italian women. J. Assist. Reprod. Genet. 2011, 28, 925–930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qiu, L.; Liu, J.; Hei, Q.-M. Association between Two Polymorphisms of Follicle Stimulating Hormone Receptor Gene and Susceptibility to Polycystic Ovary Syndrome: A Meta-analysis. Chin. Med. Sci. J. 2015, 30, 44–50. [Google Scholar] [CrossRef]
- Wu, X.-Q.; Xu, S.-M.; Liu, J.-F.; Bi, X.-Y.; Wu, Y.-X.; Liu, J. Association between FSHR polymorphisms and polycystic ovary syndrome among Chinese women in north China. J. Assist. Reprod. Genet. 2014, 31, 371–377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, Y.; Zhao, H.; Shi, Y.; Cao, Y.; Yang, D.; Li, Z.; Zhang, B.; Liang, X.; Li, T.; Chen, J.; et al. Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 2012, 44, 1020–1025. [Google Scholar] [CrossRef]
- Louwers, Y.; Stolk, L.; Uitterlinden, A.; Laven, J. Cross-Ethnic Meta-Analysis of Genetic Variants for Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2013, 98, E2006–E2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, S.; Tian, Y.; Gao, X.; Zhang, X.; Liu, H.; You, L.; Cao, Y.; Su, S.; Chan, W.-Y.; Sun, Y.; et al. Family-based analysis of eight susceptibility loci in polycystic ovary syndrome. Sci. Rep. 2015, 5, 12619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uniprot. UniProtKB-P30968 (GNRHR_HUMAN). Available online: https://www.uniprot.org/uniprot/P30968 (accessed on 1 January 2020).
- Coutinho, E.A.; Kauffman, A.S. The Role of the Brain in the Pathogenesis and Physiology of Polycystic Ovary Syndrome (PCOS). Med. Sci. 2019, 7, 84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Yang, G.; Wang, Y.; Zhang, X.; Sang, Q.; Wang, H.; Zhao, X.; Xing, Q.; He, L.; Wang, L. Common genetic variation in the 3′-untranslated region of gonadotropin-releasing hormone receptor regulates gene expression in cella and is associated with thyroid function, insulin secretion as well as insulin sensitivity in polycystic ovary syndrome patients. Qual. Life Res. 2011, 129, 553–561. [Google Scholar] [CrossRef]
- Caburet, S.; Fruchter, R.B.; Legois, B.; Fellous, M.; Shalev, S.; Veitia, R.A. A homozygous mutation of GNRHR in a familial case diagnosed with polycystic ovary syndrome. Eur. J. Endocrinol. 2017, 176, K9–K14. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.-Y.; Du, Y.-Q.; Guan, X.; Zhang, H.-Y.; Liu, T. Effect of GnRHR polymorphisms on in vitro fertilization and embryo transfer in patients with polycystic ovary syndrome. J. Hum. Genet. 2017, 62, 1065–1071. [Google Scholar] [CrossRef] [PubMed]
- Kowalczyk, K.; Franik, G.; Kowalczyk, D.; Pluta, D.; Blukacz, Ł.; Madej, P. Thyroid disorders in polycystic ovary syndrome. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 346–360. [Google Scholar]
- Zawadzki, J.K. Diagnostic Criteria for Polycystic Ovary Syndrome: Towards a Rationale Approach. Polycystic Ovary Syndrome; Blackwell Scientific: Boston, MA, USA, 1992; pp. 39–50. [Google Scholar]
- Eshre, T.R. Revised 2003 Consensus on Diagnostic Criteria and Long-Term Health Risks Related to Polycystic Ovary Syndrome. Fertil. Steril. 2004, 81, 19–25. [Google Scholar]
Variable | PCOS Group (n = 63) | Risk Group (n = 22) | Control Group (n = 67) | p-Value |
---|---|---|---|---|
Gynaecological age, median years (IQR) † | 3.0 (2.0) | 4.0 (2.0) | 4.0 (1.0) | 0.441 |
BMI, median percentile (IQR) | 89.9 (48.0) | 75.4 (39.8) | 55.0 (47.0) | <0.001 * |
Individuals with BMI above the 85th percentile, n (%) | 31 (49.2) | 6 (27.3) | 9 (13.4) | <0.001 ** |
Waist-hip ratio, median (IQR) | 0.82 (0.13) | 0.80 (0.06) | 0.76 (0.06) | 0.001 * |
mFG score, median (IQR) | 9.0 (6.0) | 8.0 (5.0) | 1.0 (2.0) | <0.001 * |
GAGS score, mean (SD) | 14.5 (9.1) | 10.9 (8.8) | 7.0 (6.0) | <0.001 ^ |
No acne, n (%) | 1 (1.9) | 2 (10.0) | 6 (15.0) | |
Mild acne, n (%) | 35 (64.8) | 13 (65.0) | 31 (77.5) | 0.147 *** |
Moderate acne, n (%) | 16 (29.6) | 4 (20.0) | 3 (7.5) | 0.002 *** |
Severe acne, n (%) | 2 (3.7) | 1 (5.0) | 0 (0) | 0.091 *** |
Polycystic ovary morphology on ultrasound, n (%) | 22 (34.9) | 3 (13.6) | 5 (7.5) | 0.001 *** |
SNV/Genotype | PCOS Group (n = 63) | Risk Group (n = 22) | Control Group (n = 67) | p-Value | ||||||
---|---|---|---|---|---|---|---|---|---|---|
HH n (%) | Hh n (%) | hh n (%) | HH n (%) | Hh n (%) | hh n (%) | HH n (%) | Hh n (%) | hh n (%) | ||
FSHR rs2349415 | 25 (39.7) | 28 (44.4) | 10 (15.9) | 7 (31.8) | 11 (50.0) | 4 (18.2) | 20 (29.9) | 33 (49.3) | 14 (20.9) | 0.81 * |
FSHR rs6166 | 18 (28.6) | 30 (47.6) | 15 (23.8) | 7 (31.8) | 12 (54.5) | 3 (13.6) | 24 (35.8) | 29 (43.3) | 14 (20.9) | 0.77 * |
FSHR rs6165 | 15 (23.8) | 36 (57.1) | 12 (19.1) | 5 (22.7) | 13 (59.1) | 4 (18.2) | 21 (31.3) | 31 (46.3) | 15 (22.4) | 0.73 * |
ESR2 rs4986938 | 14 (22.2) | 38 (60.3) | 11 (17.5) | 5 (22.7) | 13 (59.1) | 4 (18.2) | 10 (14.9) | 49 (73.1) | 8 (11.9) | 0.58 * |
GNRHR rs104893837 | 59 (93.7) | 4 (6.3) | 0 (0) | 21 (95.5) | 1 (4.5) | 0 (0) | 64 (95.5) | 3 (4.5) | 0 (0) | 0.89 ** |
LHCGR rs2293275 | 26 (41.3) | 26 (41.3) | 11 (17.4) | 6 (27.3) | 11 (50.0) | 5 (22.7) | 22 (32.8) | 31 (46.3) | 14 (20.9) | 0.77 * |
SNV | Modified Ferriman-Gallwey Score, Median (IQR) | BMI Percentile, Median (IQR) | Waist-Hip Ratio, Median (IQR) | Total Testosterone Level, Median (IQR) | GAGS Score, Mean (SD) | PCO Morphology on Ultrasound, n (%) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HH | Hh | hh | p * | HH | Hh | hh | p * | HH | Hh | hh | p * | HH | Hh | hh | p * | HH | Hh | hh | p ^ | HH | Hh | hh | p | |
FSHR rs2349415 | 10.0 (6.0) | 9.0 (6.0) | 12.5 (9.8) | 0.44 | 82.2 (64.1) | 93.1 (45.0) | 91.4 (26.1) | 0.88 | 0.84 (0.19) | 0.84 (0.11) | 0.77 (0.17) | 0.65 | 0.42 (0.37) | 0.48 (0.52) | 0.40 (0.37) | 0.76 | 15.0 (10.7) | 13.8 (7.6) | 13.5 (8.1) | 0.99 | 9 (40.9) | 10 (45.5) | 3 (13.6) | 0.849 ** |
FSHR rs6166 | 9.0 (7.5) | 9.5 (6.0) | 14.0 (10.5) | 0.19 | 95.6 (60.6) | 76.7 (46.6) | 81.8 (60.4) | 0.93 | 0.83 (0.17) | 0.82 (0.13) | 0.84 (0.10) | 0.89 | 0.53 (0.32) | 0.38 (0.44) | 0.44 (0.42) | 0.80 | 10.4 (7.8) | 16.5 (9.4) | 14.0 (8.4) | 0.12 | 5 (22.7) | 10 (45.5) | 7 (31.8) | 0.371 ** |
FSHR rs6165 | 9.0 (7.0) | 9.0 (6.0) | 15.0 (8.0) | 0.12 | 95.6 (63.9) | 76.7 (48.0) | 94.0 (41.4) | 0.71 | 0.84 (0.16) | 0.82 (0.14) | 0.84 (0.13) | 0.94 | 0.45 (0.49) | 0.40 (0.41) | 0.57 (0.43) | 0.89 | 12.4 (8.8) | 15.1 (9.3) | 13.4 (9.2) | 0.70 | 4 (18.2) | 12 (54.5) | 6 (27.3) | 0.492 *** |
ESR2 rs4986938 | 10.0 (6.0) | 8.0 (7.3) | 11.0 (6.5) | 0.056 | 90.4 (49.9) | 89.0 (53.9) | 96.6 (30.8) | 0.36 | 0.81 (0.09) | 0.81 (0.14) | 0.85 (0.05) | 0.63 | 0.38 (0.26) | 0.38 (0.38) | 0.68 (0.20) | 0.04 | 14.0 (10.9) | 13.3 (15.3) | 13.4 (16.5) | 0.71 | 6 (27.3) | 13 (59.1) | 3 (13.6) | 0.791 *** |
GNRHR rs104893837 | 9.5 (6.0) | 10.0 | 0 (0) | 0.99 | 90.4 (48.0) | 74.9 | 0 (0) | 0.75 | 0.83 (0.13) | 0.88 | 0 (0) | 0.97 | 0.44 (0.40) | 0.33 | 0 (0) | 0.47 | 14.4 (8.9) | 12.5 (16.3) | 0 (0) | 0.31 | 21 (95.5) | 1 (4.5) | 0 (0) | 1.000 *** |
LHCGR rs2293275 | 9.0 (6.0) | 10.5 (5.8) | 14.0 (12.0) | 0.92 | 71.6 (56.8) | 89.0 (49.4) | 98.9 (15.9) | 0.27 | 0.81 (0.11) | 0.84 (0.17) | 0.88 (0.09) | 0.19 | 0.35 (0.37) | 0.59 (0.36) | 0.67 (0.66) | 0.13 | 14.3 (9.0) | 15.6 (9.6) | 10.6 (7.6) | 0.60 | 9 (40.9) | 9 (40.9) | 4 (18.2) | 0.814 *** |
SNV | Modified Ferriman-Gallwey Score, Median (IQR) | BMI Percentile, Median (IQR) | Waist-Hip Ratio, Median (IQR) | Total Testosterone Level, Median (IQR) | GAGS Score, Mean (SD) | PCO Morphology on Ultrasound, n (%) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Major Allele Homozygotes (HH) | Minor Allele Carriers (Hh, hh) | p * | Major Allele Homozygotes (HH) | Minor Allele Carriers (Hh, hh) | p * | Major Allele Homozygotes (HH) | Minor Allele Carriers (Hh, hh) | p * | Major Allele Homozygotes (HH) | Minor Allele Carriers (Hh, hh) | p * | Major Allele Homozygotes (HH) | Minor Allele Carriers (Hh, hh) | p ^ | Major Allele Homozygotes (HH) | Minor Allele Carriers (Hh, hh) | p | |
FSHR rs2349415 | 10.0 (6.0) | 9.5 (7.8) | 0.84 | 82.2 (64.1) | 92.3 (41.2) | 0.73 | 0.84 (0.19) | 0.83 (0.12) | 0.36 | 0.42 (0.37) | 0.46 (0.47) | 0.90 | 14.9 (10.7) | 14.0 (7.6) | 0.902 | 9 (40.9) | 13 (59.1) | 0.879 ** |
FSHR rs6166 | 9.0 (7.5) | 10.0 (7.0) | 0.60 | 95.6 (60.6) | 76.7 (48.1) | 0.73 | 0.83 (0.17) | 0.84 (0.13) | 0.90 | 0.53 (0.32) | 0.38 (0.42) | 0.50 | 10.4 (7.8) | 16.3 (9.1) | 0.084 | 5 (22.7) | 17 (77.3) | 0.389 ** |
FSHR rs6165 | 9.0 (7.0) | 10.0 (6.0) | 0.64 | 95.6 (63.9) | 83.7 (48.1) | 0.79 | 0.84 (0.16) | 0.83 (0.14) | 0.98 | 0.45 (0.49) | 0.43 (0.39) | 0.74 | 12.4 (8.6) | 15.1 (9.2) | 0.434 | 4 (18.2) | 18 (81.8) | 0.747 *** |
ESR2 rs4986938 | 10.0 (6.0) | 8.0 (7.0) | 0.07 | 90.4 (49.9) | 89.4 (47.1) | 0.92 | 0.81 (0.09) | 0.83 (0.12) | 0.45 | 0.38 (0.26) | 0.47 (0.42) | 0.40 | 14.0 (10.9) | 13.3 (8.7) | 0.476 | 6 (27.3) | 16 (72.7) | 0.566 *** |
GNRHR rs104893837 | 10.0 (6.0) | 10.0 | 0.99 | 90.4 (48.0) | 74.9 | 0.75 | 0.84 (0.12) | 0.88 | 0.97 | 0.45 (0.40) | 0.33 | 0.47 | 14.5 (9.0) | 12.5 (16.3) | 0.312 | 21 (95.5) | 1 (4.5) | 1.000 *** |
LHCGR rs2293275 | 9.0 (6.0) | 11.5 (6.3) | 0.71 | 71.6 (56.8) | 94.4 (44.5) | 0.37 | 0.81 (0.11) | 0.86 (0.11) | 0.08 | 0.35 (0.37) | 0.61 (0.42) | 0.044 | 14.3 (9.0) | 14.5 (9.4) | 0.902 | 9 (40.9) | 13 (59.1) | 0.792 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lidaka, L.; Bekere, L.; Rota, A.; Isakova, J.; Lazdane, G.; Kivite-Urtane, A.; Dzivite-Krisane, I.; Kempa, I.; Dobele, Z.; Gailite, L. Role of Single Nucleotide Variants in FSHR, GNRHR, ESR2 and LHCGR Genes in Adolescents with Polycystic Ovary Syndrome. Diagnostics 2021, 11, 2327. https://doi.org/10.3390/diagnostics11122327
Lidaka L, Bekere L, Rota A, Isakova J, Lazdane G, Kivite-Urtane A, Dzivite-Krisane I, Kempa I, Dobele Z, Gailite L. Role of Single Nucleotide Variants in FSHR, GNRHR, ESR2 and LHCGR Genes in Adolescents with Polycystic Ovary Syndrome. Diagnostics. 2021; 11(12):2327. https://doi.org/10.3390/diagnostics11122327
Chicago/Turabian StyleLidaka, Lasma, Laine Bekere, Adele Rota, Jekaterina Isakova, Gunta Lazdane, Anda Kivite-Urtane, Iveta Dzivite-Krisane, Inga Kempa, Zane Dobele, and Linda Gailite. 2021. "Role of Single Nucleotide Variants in FSHR, GNRHR, ESR2 and LHCGR Genes in Adolescents with Polycystic Ovary Syndrome" Diagnostics 11, no. 12: 2327. https://doi.org/10.3390/diagnostics11122327
APA StyleLidaka, L., Bekere, L., Rota, A., Isakova, J., Lazdane, G., Kivite-Urtane, A., Dzivite-Krisane, I., Kempa, I., Dobele, Z., & Gailite, L. (2021). Role of Single Nucleotide Variants in FSHR, GNRHR, ESR2 and LHCGR Genes in Adolescents with Polycystic Ovary Syndrome. Diagnostics, 11(12), 2327. https://doi.org/10.3390/diagnostics11122327