Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations
Abstract
:1. Introduction
2. Classic DWI Mono-Compartmental Model
3. IVIM Theory, Bi-Compartmental Model
4. Tri-Compartmental Model
4.1. Equation
4.2. Evidence for Tri-Exponential Decay Model
4.3. Tri-Exponential Model Fitting Methods.
4.4. Tri-Exponential Parameters Values in Healthy Liver
4.5. b-Value Distribution for Tri-Exponential Model
4.6. Effects of the B0 Field Strength and the Time of Echo on Tri-Exponential IVIM Parameters
4.7. Origins of the Fast and Very Fast Compartments of Diffusion in Liver
4.8. Limitations of the Tri-Exponential Model
4.9. Clinical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coenegrachts, K.; Delanote, J.; Ter Beek, L.; Haspeslagh, M.; Bipat, S.; Stoker, J.; Van Kerkhove, F.; Steyaert, L.; Rigauts, H.; Casselman, J.W. Improved focal liver lesion detection: Comparison of single-shot diffusion-weighted echoplanar and single-shot T2 weighted turbo spin echo techniques. Br. J. Radiol. 2007, 80, 524–531. [Google Scholar] [CrossRef]
- Koh, D.M.; Brown, G.; Riddell, A.M.; Scurr, E.; Collins, D.J.; Allen, S.D.; Chau, I.; Cunningham, D.; deSouza, N.M.; Leach, M.O.; et al. Detection of colorectal hepatic metastases using MnDPDP MR imaging and diffusion-weighted imaging (DWI) alone and in combination. Eur. Radiol. 2008, 18, 903–910. [Google Scholar] [CrossRef]
- Colagrande, S.; Castellani, A.; Nardi, C.; Lorini, C.; Calistri, L.; Filippone, A. The role of diffusion-weighted imaging in the detection of hepatic metastases from colorectal cancer: A comparison with unenhanced and Gd-EOB-DTPA enhanced MRI. Eur. J. Radiol. 2016, 85, 1027–1034. [Google Scholar] [CrossRef]
- Vilgrain, V.; Esvan, M.; Ronot, M.; Caumont-Prim, A.; Aubé, C.; Chatellier, G. A meta-analysis of diffusion-weighted and gadoxetic acid-enhanced MR imaging for the detection of liver metastases. Eur. Radiol. 2016, 26, 4595–4615. [Google Scholar] [CrossRef]
- Taouli, B.; Chouli, M.; Martin, A.J.; Qayyum, A.; Coakley, F.V.; Vilgrain, V. Chronic hepatitis: Role of diffusion-weighted imaging and diffusion tensor imaging for the diagnosis of liver fibrosis and inflammation. J. Magn. Reson. Imaging 2008, 28, 89–95. [Google Scholar] [CrossRef]
- Petitclerc, L.; Sebastiani, G.; Gilbert, G.; Cloutier, G.; Tang, A. Liver fibrosis: Review of current imaging and MRI quantification techniques. J. Magn. Reson. Imaging 2017, 45, 1276–1295. [Google Scholar] [CrossRef]
- Luciani, A.; Vignaud, A.; Cavet, M.; Nhieu, J.T.V.; Mallat, A.; Ruel, L.; Laurent, A.; Deux, J.F.; Brugieres, P.; Rahmouni, A. Liver cirrhosis: Intravoxel incoherent motion MR imaging--Pilot study. Radiology 2008, 249, 891–899. [Google Scholar] [CrossRef]
- Palmucci, S.; Cappello, G.; Attinà, G.; Fuccio Sanzà, G.; Foti, P.V.; Ettorre, G.C.; Milone, P. Diffusion-weighted MRI for the assessment of liver fibrosis: Principles and applications. BioMed. Res. Int. 2015, 2015, 874201. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Cercueil, J.P.; Yuan, J.; Chen, W.; Loffroy, R.; Wáng, Y.X.J. Liver intravoxel incoherent motion (IVIM) magnetic resonance imaging: A comprehensive review of published data on normal values and applications for fibrosis and tumor evaluation. Quant. Imaging Med. Surg. 2017, 7, 59–78. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Che-Nordin, N.; Wáng, Y.X.J.; Rong, P.F.; Qiu, S.W.; Zhang, S.W.; Zhang, P.; Jiang, Y.F.; Chevallier, O.; Zhao, F.; et al. Intravoxel incoherent motion derived liver perfusion/diffusion readouts can be reliable biomarker for the detection of viral hepatitis B induced liver fibrosis. Quant. Imaging Med. Surg. 2019, 9, 371–385. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Che-Nordin, N.; Wang, L.F.; Xiao, B.H.; Chevallier, O.; Yun, Y.X.; Guo, S.W.; Wáng, Y.X.J. High performance of intravoxel incoherent motion diffusion MRI in detecting viral hepatitis-b induced liver fibrosis. Ann. Transl. Med. 2019, 7, 39. [Google Scholar] [CrossRef]
- Wáng, Y.X.J.; Deng, M.; Li, Y.T.; Huang, H.; Leung, J.C.S.; Chen, W.; Lu, P.X. A Combined use of intravoxel incoherent motion MRI parameters can differentiate early-stage hepatitis-b fibrotic livers from healthy livers. SLAS Technol. 2018, 23, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Gheorghe, G.; Stoian, A.P.; Gaman, M.A.; Socea, B.; Neagu, T.P.; Stanescu, A.M.A.; Bratu, O.G.; Mischianu, D.L.D.; Suceveanu, A.I.; Diaconu, C.C. The benefits and risks of antioxidant treatment in liver diseases. Rev. Chim. 2019, 70, 651–655. [Google Scholar] [CrossRef]
- Koh, D.M.; Collins, D.J. Diffusion-weighted MRI in the body: Applications and challenges in oncology. AJR. Am. J. Roentgenol. 2007, 188, 1622–1635. [Google Scholar] [CrossRef] [Green Version]
- Shah, B.; Anderson, S.W.; Scalera, J.; Jara, H.; Soto, J.A. Quantitative MR imaging: Physical principles and sequence design in abdominal imaging. Radiographics 2011, 31, 867–880. [Google Scholar] [CrossRef]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology 1986, 161, 401–407. [Google Scholar] [CrossRef] [Green Version]
- Le Bihan, D.; Breton, E.; Lallemand, D.; Aubin, M.L.; Vignaud, J.; Laval-Jeantet, M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988, 168, 497–505. [Google Scholar] [CrossRef]
- Turner, R.; Le Bihan, D.; Maier, J.; Vavrek, R.; Hedges, L.K.; Pekar, J. Echo-planar imaging of intravoxel incoherent motion. Radiology 1990, 177, 407–414. [Google Scholar] [CrossRef]
- Chow, A.M.; Gao, D.S.; Fan, S.J.; Qiao, Z.; Lee, F.Y.; Yang, J.; Man, K.; Wu, E.X. Liver fibrosis: An intravoxel incoherent motion (IVIM) study. J. Magn. Reson. Imaging 2012, 36, 159–167. [Google Scholar] [CrossRef]
- Kuai, Z.X.; Liu, W.Y.; Zhu, Y.M. Effect of multiple perfusion components on pseudo-diffusion coefficient in intravoxel incoherent motion imaging. Phys. Med. Biol. 2017, 62, 8197–8209. [Google Scholar] [CrossRef] [Green Version]
- Ohtani, O.; Ohtani, Y. Lymph circulation in the liver. Anat. Rec. 2008, 291, 643–652. [Google Scholar] [CrossRef] [PubMed]
- Cercueil, J.P.; Petit, J.M.; Nougaret, S.; Soyer, P.; Fohlen, A.; Pierredon-Foulongne, M.A.; Schembri, V.; Delhom, E.; Schmidt, S.; Denys, A.; et al. Intravoxel incoherent motion diffusion-weighted imaging in the liver: Comparison of mono-, bi- and tri-exponential modelling at 3.0-T. Eur. Radiol. 2015, 25, 1541–1550. [Google Scholar] [CrossRef] [PubMed]
- Wurnig, M.C.; Germann, M.; Boss, A. Is there evidence for more than two diffusion components in abdominal organs?—A magnetic resonance imaging study in healthy volunteers. NMR Biomed. 2018, 31. [Google Scholar] [CrossRef]
- Chevallier, O.; Zhou, N.; Cercueil, J.P.; He, J.; Loffroy, R.; Wáng, Y.X.J. Comparison of tri-exponential decay versus bi-exponential decay and full fitting versus segmented fitting for modeling liver intravoxel incoherent motion diffusion MRI. NMR Biomed. 2019, 32. [Google Scholar] [CrossRef]
- Riexinger, A.J.; Martin, J.; Rauh, S.; Wetscherek, A.; Pistel, M.; Kuder, T.A.; Nagel, A.M.; Uder, M.; Hensel, B.; Müller, L.; et al. On the field strength dependence of bi- and triexponential intravoxel incoherent motion (IVIM) parameters in the liver. J. Magn. Reson. Imaging 2019, 50, 1883–1892. [Google Scholar] [CrossRef]
- Riexinger, A.; Martin, J.; Wetscherek, A.; Kuder, T.A.; Uder, M.; Hensel, B.; Laun, F.B. An optimized b-value distribution for triexponential intravoxel incoherent motion (IVIM) in the liver. Magn. Reson. Med. 2021, 85, 2095–2108. [Google Scholar] [CrossRef]
- Cohen, A.D.; Schieke, M.C.; Hohenwalter, M.D.; Schmainda, K.M. The effect of low b-values on the intravoxel incoherent motion derived pseudodiffusion parameter in liver. Magn. Reson. Med. 2015, 73, 306–311. [Google Scholar] [CrossRef] [Green Version]
- Maki, J.H.; MacFall, J.R.; Johnson, G.A. The use of gradient flow compensation to separate diffusion and microcirculatory flow in MRI. Magn. Reson. Med. 1991, 17, 95–107. [Google Scholar] [CrossRef]
- Moteki, T.; Horikoshi, H. Evaluation of noncirrhotic hepatic parenchyma with and without significant portal vein stenosis using diffusion-weighted echo-planar MR on the basis of multiple-perfusion-components theory. Magn. Reson. Imaging 2011, 29, 64–73. [Google Scholar] [CrossRef]
- Kuai, Z.X.; Liu, W.Y.; Zhang, Y.L.; Zhu, Y.M. Generalization of intravoxel incoherent motion model by introducing the notion of continuous pseudodiffusion variable. Magn. Reson. Med. 2016, 76, 1594–1603. [Google Scholar] [CrossRef]
- Delattre, B.M.A.; Viallon, M.; Wei, H.; Zhu, Y.M.; Feiweier, T.; Pai, V.M.; Wen, H.; Croisille, P. In vivo cardiac diffusion-weighted magnetic resonance imaging: Quantification of normal perfusion and diffusion coefficients with intravoxel incoherent motion imaging. Investig. Radiol. 2012, 47, 662–670. [Google Scholar] [CrossRef]
- Lemke, A.; Laun, F.B.; Simon, D.; Stieltjes, B.; Schad, L.R. An in vivo verification of the intravoxel incoherent motion effect in diffusion-weighted imaging of the abdomen. Magn. Reson. Med. 2010, 64, 1580–1585. [Google Scholar] [CrossRef]
- Lemke, A.; Stieltjes, B.; Schad, L.R.; Laun, F.B. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn. Reson. Imaging 2011, 29, 766–776. [Google Scholar] [CrossRef]
- Van Baalen, S.; Leemans, A.; Dik, P.; Lilien, M.R.; Ten Haken, B.; Froeling, M. Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit. J. Magn. Reson. Imaging 2017, 46, 228–239. [Google Scholar] [CrossRef]
- Graham, S.J.; Bronskill, M.J. MR measurement of relative water content and multicomponent T2 relaxation in human breast. Magn. Reson. Med. 1996, 35, 706–715. [Google Scholar] [CrossRef]
- Whittall, K.P.; MacKay, A.L.; Graeb, D.A.; Nugent, R.A.; Li, D.K.; Paty, D.W. In vivo measurement of T2 distributions and water contents in normal human brain. Magn. Reson. Med. 1997, 37, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Chevallier, O.; Zhou, N.; He, J.; Loffroy, R.; Wáng, Y.X.J. Removal of evidential motion-contaminated and poorly fitted image data improves IVIM diffusion MRI parameter scan-rescan reproducibility. Acta Radiol. 2018, 59, 1157–1167. [Google Scholar] [CrossRef]
- Motulsky, H.J.; Christopoulos, A. Fitting Models to Biological Data Using Linear and Non-Linear Regression: A Practical Guide to Curve Fitting; Oxford University Press: London, UK, 2004. [Google Scholar]
- van der Bel, R.; Gurney-Champion, O.J.; Froeling, M.; Stroes, E.S.G.; Nederveen, A.J.; Krediet, C.T.P. A Tri-exponential model for intravoxel incoherent motion analysis of the human kidney: In silico and during pharmacological renal perfusion modulation. Eur. J. Radiol. 2017, 91, 168–174. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Sung, Y.S.; Lee, S.S.; Lee, Y.; Cheong, H.; Kim, Y.J.; Lee, M.-G. Intravoxel incoherent motion diffusion-weighted MRI of the abdomen: The effect of fitting algorithms on the accuracy and reliability of the parameters. J. Magn. Reson. Imaging 2017, 45, 1637–1647. [Google Scholar] [CrossRef] [PubMed]
- Guiu, B.; Petit, J.M.; Capitan, V.; Aho, S.; Masson, D.; Lefevre, P.H.; Favelier, S.; Loffroy, R.; Vergès, B.; Hillon, P.; et al. Intravoxel incoherent motion diffusion-weighted imaging in nonalcoholic fatty liver disease: A 3.0-T MR study. Radiology 2012, 265, 96–103. [Google Scholar] [CrossRef]
- Wurnig, M.C.; Donati, O.F.; Ulbrich, E.; Filli, L.; Kenkel, D.; Thoeny, H.C.; Boss, A. Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: Proposal of a standardized algorithm. Magn. Reson. Med. 2015, 74, 1414–1422. [Google Scholar] [CrossRef]
- Patel, J.; Sigmund, E.E.; Rusinek, H.; Oei, M.; Babb, J.S.; Taouli, B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast-enhanced MRI alone and in combination: Preliminary experience. J. Magn. Reson. Imaging 2010, 31, 589–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Wong, O.L.; Lo, G.G.; Chan, H.H.L.; Wong, T.T.; Cheung, P.S.Y. Statistical assessment of bi-exponential diffusion weighted imaging signal characteristics induced by intravoxel incoherent motion in malignant breast tumors. Quant. Imaging Med. Surg. 2016, 6, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.T.; Huang, H.; Zhuo, Z.; Lu, P.X.; Chen, W.; Wáng, Y.X.J. Bi-phase age-related brain gray matter magnetic resonance T1ρ relaxation time change in adults. Magn. Reson. Imaging 2017, 39, 200–205. [Google Scholar] [CrossRef]
- Freiman, M.; Perez-Rossello, J.M.; Callahan, M.J.; Voss, S.D.; Ecklund, K.; Mulkern, R.V.; Warfield, S.K. Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves. Med. Image Anal. 2013, 17, 325–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurugol, S.; Freiman, M.; Afacan, O.; Perez-Rossello, J.M.; Callahan, M.J.; Warfield, S.K. Spatially-constrained probability distribution model of incoherent motion (SPIM) for abdominal diffusion-weighted MRI. Med. Image Anal. 2016, 32, 173–183. [Google Scholar] [CrossRef] [Green Version]
- Barbieri, S.; Donati, O.F.; Froehlich, J.M.; Thoeny, H.C. Impact of the calculation algorithm on biexponential fitting of diffusion-weighted MRI in upper abdominal organs. Magn. Reson. Med. 2016, 75, 2175–2184. [Google Scholar] [CrossRef]
- Neil, J.J.; Bretthorst, G.L. On the use of Bayesian probability theory for analysis of exponential decay data: An example taken from intravoxel incoherent motion experiments. Magn. Reson. Med. 1993, 29, 642–647. [Google Scholar] [CrossRef]
- Orton, M.R.; Collins, D.J.; Koh, D.M.; Leach, M.O. Improved intravoxel incoherent motion analysis of diffusion weighted imaging by data driven Bayesian modeling. Magn. Reson. Med. 2014, 71, 411–420. [Google Scholar] [CrossRef]
- Lanzarone, E.; Mastropietro, A.; Scalco, E.; Vidiri, A.; Rizzo, G. A novel Bayesian approach with conditional autoregressive specification for intravoxel incoherent motion diffusion-weighted MRI. NMR Biomed. 2020, 33, e4201. [Google Scholar] [CrossRef] [PubMed]
- Bertleff, M.; Domsch, S.; Weingärtner, S.; Zapp, J.; O’Brien, K.; Barth, M.; Schad, L.R. Diffusion parameter mapping with the combined intravoxel incoherent motion and kurtosis model using artificial neural networks at 3 T. NMR Biomed. 2017, 30. [Google Scholar] [CrossRef]
- Barbieri, S.; Gurney-Champion, O.J.; Klaassen, R.; Thoeny, H.C. Deep learning how to fit an intravoxel incoherent motion model to diffusion-weighted MRI. Magn. Reson. Med. 2020, 83, 312–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Gambarota, G.; Shu, H.; Jiang, L.; Leporq, B.; Beuf, O.; Karfoul, A. Efficient sparsity-based algorithm for parameter estimation of the tri-exponential intra voxel incoherent motion (IVIM) model: Application to diffusion-weighted MR imaging in the liver. In Proceedings of the 2017 IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), Curaçao, The Netherlands, 10–13 December 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Liu, J.; Gambarota, G.; Shu, H.; Jiang, L.; Leporq, B.; Beuf, O.; Karfoul, A. All-in-one approach for constrained all-voxel tri-exponential IVIM model identification: Application to diffusion-weighted MR imaging in the liver. In Proceedings of the 2018 52nd Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 28–31 October 2018; pp. 1192–1196. [Google Scholar] [CrossRef]
- Richter, S.; Mücke, I.; Menger, M.D.; Vollmar, B. Impact of intrinsic blood flow regulation in cirrhosis: Maintenance of hepatic arterial buffer response. Am. J. Physiol. Gastrointest. Liver Physiol. 2000, 279, G454–G462. [Google Scholar] [CrossRef] [Green Version]
- Vollmar, B.; Menger, M.D. The hepatic microcirculation: Mechanistic contributions and therapeutic targets in liver injury and repair. Physiol. Rev. 2009, 89, 1269–1339. [Google Scholar] [CrossRef]
- Komatsu, H.; Koo, A.; Guth, P.H. Leukocyte flow dynamics in the rat liver microcirculation. Microvasc. Res. 1990, 40, 1–13. [Google Scholar] [CrossRef]
- van Tyen, R.; Saloner, D.; Jou, L.D.; Berger, S. MR imaging of flow through tortuous vessels: A numerical simulation. Magn. Reson. Med. 1994, 31, 184–195. [Google Scholar] [CrossRef]
- Fournet, G.; Li, J.R.; Cerjanic, A.M.; Sutton, B.P.; Ciobanu, L.; Le Bihan, D. A two-pool model to describe the IVIM cerebral perfusion. J. Cereb. Blood Flow Metab. 2017, 37, 2987–3000. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayashi, T.; Miyati, T.; Takahashi, J.; Fukuzawa, K.; Sakai, H.; Tano, M.; Saitoh, S. Diffusion analysis with triexponential function in liver cirrhosis. J. Magn. Reson. Imaging 2013, 38, 148–153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gurney-Champion, O.J.; Froeling, M.; Klaassen, R.; Runge, J.H.; Bel, A.; van Laarhoven, H.W.M.; Stoker, J.; Nederveen, A.J. Minimizing the acquisition time for intravoxel incoherent motion magnetic resonance imaging acquisitions in the liver and pancreas. Investig. Radiol. 2016, 51, 211–220. [Google Scholar] [CrossRef]
- Gambarota, G.; Hitti, E.; Leporq, B.; Saint-Jalmes, H.; Beuf, O. Eliminating the blood-flow confounding effect in intravoxel incoherent motion (IVIM) using the non-negative least square analysis in liver. Magn. Reson. Med. 2017, 77, 310–317. [Google Scholar] [CrossRef]
- Wáng, Y.X.J.; Wang, X.; Wu, P.; Wang, Y.; Chen, W.; Chen, H.; Li, J. Topics on quantitative liver magnetic resonance imaging. Quant. Imaging Med. Surg. 2019, 9, 1840–1890. [Google Scholar] [CrossRef] [PubMed]
- Xiao, B.H.; Huang, H.; Wang, L.F.; Qiu, S.W.; Guo, S.W.; Wáng, Y.X.J. Diffusion MRI derived per area vessel density as a surrogate biomarker for detecting viral hepatitis B-induced liver fibrosis: A proof-of-concept study. SLAS Technol. 2020, 25, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Wáng, Y.X.J. Living tissue intravoxel incoherent motion (IVIM) diffusion MR analysis without b = 0 image: An example for liver fibrosis evaluation. Quant. Imaging Med. Surg. 2019, 9, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zheng, C.J.; Wang, L.F.; Che-Nordin, N.; Wáng, Y.X.J. Age and gender dependence of liver diffusion parameters and the possibility that intravoxel incoherent motion modeling of the perfusion component is constrained by the diffusion component. NMR Biomed. 2020, e4449. [Google Scholar] [CrossRef]
- Hayashi, T.; Miyati, T.; Takahashi, J.; Tsuji, Y.; Suzuki, H.; Tagaya, N.; Hiramoto, M.; Fukuzawa, K.; Tano, M.; Saitoh, S. Diffusion analysis with triexponential function in hepatic steatosis. Radiol. Phys. Technol. 2014, 7, 89–94. [Google Scholar] [CrossRef]
- van Baalen, S.; Froeling, M.; Asselman, M.; Klazen, C.; Jeltes, C.; van Dijk, L.; Vroling, B.; Dik, P.; Ten Haken, B. Mono, bi- and tri-exponential diffusion MRI modelling for renal solid masses and comparison with histopathological findings. Cancer Imaging 2018, 18, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Authors, Year | No. of Subjects | No. of Scans | Fitting Comparison Methods |
---|---|---|---|
Cercueil et al., 2015 [22] | 38 # | 38 # | Extra sum-of-squares F-test and AIC, AICc |
36 ## | 36 ## | ||
Kuai et al., 2017 [20] | 31 | 31 | Fitting residuals data |
Chevallier et al., 2019 * [24] | 18 | 50 | Adjusted-R2 Extra sum-of-squares F-test AIC, AICc Graphical analysis of the residuals |
Riexinger et al., 2019 ** [25] | 20 | 40 | AICc |
Riexinger et al., 2021 [26] | 3 | 3 | AIC |
Authors, Year | D’Vfast | D’fast | D’slow | F’Vfast | F’fast | F’slow |
---|---|---|---|---|---|---|
Cercueil et al., 2015 a [22] | 391.96 | 19.54 | 1.23 | 17.1 | 17.6 | 65.3 |
Cercueil et al., 2015 b [22] | 404.00 | 26.50 | 1.35 | 13.5 | 13.7 | 72.7 |
Kuai et al., 2017 [20] | 386.25 | 19.32 | 1.21 | 17 | 17 | 66 |
Wurnig et al., 2018 [23] | 270 | 43.8 | 1.26 | 13.4 | 7.8 | 73.8 |
Chevallier et al., 2019 c [24] | 448.8 | 15.4 | 0.98 | 11.7 | 11.7 | 76.6 |
Chevallier et al., 2019 d [24] | 1911.2 | 16.1 | 0.98 | 11.7 | 11.9 | 76.4 |
Riexinger et al., 2019 e [25] | 2453 | 81.3 | 1.22 | 15.2 | 16.1 | 68.7 * |
Riexinger et al., 2019 f [25] | 2333 | 65.9 | 1.00 | 15.9 | 17.4 | 69.7 * |
Riexinger et al., 2021 g [26] | 500 | 16 | 1.1 | 10.8 | 13.1 | 76.1 * |
Authors, Year | B0 | TE | Breathing Management | No. of b-Values | b-Values ≤ 15 | Highest b-Value |
---|---|---|---|---|---|---|
Cercueil et al., 2015 a [22] | 3T | 68 ms | NET | 11 | 0, 5, 15 | 800 |
Cercueil et al., 2015 b [22] | 3T | 67 ms | NET | 16 | 0, 5, 10, 15 | 800 |
Kuai et al., 2017 [20] | 3T | 68 ms | NET | 11 | 0, 5, 15 | 800 |
Wurnig et al., 2018 [23] | 3T | 57 ms | FB | 68 | 0, 15 | 1005 |
Chevallier et al., 2019 [24] | 3T | 55 ms | RT* | 16 | 0, 3, 10 | 800 |
Riexinger et al., 2019 [25] | 1.5T | 100 ms | FB | 24 | 0.2, 0.4, 0.7, 0.8, 1.1, 1.7, 3, 3.8, 4.1, 4.3, 4.4, 4.5, 4.9, 10, 15 | 500 |
Riexinger et al., 2019 [25] | 3T | 100 ms | FB | 24 | 0.2, 0.4, 0.7, 0.8, 1.1, 1.7, 3, 3.8, 4.1, 4.3, 4.4, 4.5, 4.9, 10, 15 | 500 |
Riexinger et al., 2021 c [26] | 3T | 45 ms | RT | 16 | 0, 0.3, 1, 1.2, 1.5, 3.5, 5, 6 | 800 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chevallier, O.; Wáng, Y.X.J.; Guillen, K.; Pellegrinelli, J.; Cercueil, J.-P.; Loffroy, R. Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations. Diagnostics 2021, 11, 379. https://doi.org/10.3390/diagnostics11020379
Chevallier O, Wáng YXJ, Guillen K, Pellegrinelli J, Cercueil J-P, Loffroy R. Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations. Diagnostics. 2021; 11(2):379. https://doi.org/10.3390/diagnostics11020379
Chicago/Turabian StyleChevallier, Olivier, Yì Xiáng J. Wáng, Kévin Guillen, Julie Pellegrinelli, Jean-Pierre Cercueil, and Romaric Loffroy. 2021. "Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations" Diagnostics 11, no. 2: 379. https://doi.org/10.3390/diagnostics11020379
APA StyleChevallier, O., Wáng, Y. X. J., Guillen, K., Pellegrinelli, J., Cercueil, J. -P., & Loffroy, R. (2021). Evidence of Tri-Exponential Decay for Liver Intravoxel Incoherent Motion MRI: A Review of Published Results and Limitations. Diagnostics, 11(2), 379. https://doi.org/10.3390/diagnostics11020379