Development of a Solid and Flexible Matching Medium for Microwave Medical Diagnostic Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Permittivity Measurement Set-Up
2.2. System Calibration
2.3. Matching Medium Preparation
2.3.1. Material Properties
2.3.2. PDMS-BaTiO Micro-Composite Preparation
3. Results
3.1. Prepared Composites
3.2. Repeatability Evaluation of Permittivity Measurements
3.3. Material Homogeneity Evaluation
3.4. Functionality Assessment
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fear, E.C.; Meaney, P.M.; Stuchly, M.A. Microwaves for breast cancer detection? IEEE Potentials 2003, 22, 12–18. [Google Scholar] [CrossRef]
- Nikolova, N.K. Microwave imaging for breast cancer. IEEE Microw. Mag. 2011, 12, 78–94. [Google Scholar] [CrossRef]
- Chandra, R.; Zhou, H.; Balasingham, I.; Narayanan, R.M. On the opportunities and challenges in microwave medical sensing and imaging. IEEE Trans. Biomed. Eng. 2015, 62, 1667–1682. [Google Scholar] [CrossRef]
- Paulsen, K.D.; Meaney, P.M.; Gilman, L.; Gilman, L.C. Alternative Breast Imaging: Four Model-Based Approaches; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2005. [Google Scholar]
- Rubæk, T.; Meaney, P.M.; Meincke, P.; Paulsen, K.D. Nonlinear microwave imaging for breast-cancer screening using Gauss–Newton’s method and the CGLS inversion algorithm. IEEE Trans. Antennas Propag. 2007, 55, 2320–2331. [Google Scholar] [CrossRef] [Green Version]
- Sill, J.; Fear, E. Tissue sensing adaptive radar for breast cancer detection: Study of immersion liquids. Electron. Lett. 2005, 41, 113–115. [Google Scholar] [CrossRef]
- Catapano, I.; Di Donato, L.; Crocco, L.; Bucci, O.M.; Morabito, A.F.; Isernia, T.; Massa, R. On quantitative microwave tomography of female breast. Prog. Electromagn. Res. 2009, 97, 75–93. [Google Scholar] [CrossRef] [Green Version]
- Meaney, P.; Pendergrass, S.; Fanning, M.; Paulsen, K. Importance of using a reduced contrast coupling medium in 2D microwave breast imaging. J. Electromagn. Waves Appl. 2003, 17, 333–355. [Google Scholar] [CrossRef]
- Rappaport, C. Determination of bolus dielectric constant for optimum coupling of microwaves through skin for breast cancer imaging. Int. J. Antennas Propag. 2008, 2008, 359582. [Google Scholar] [CrossRef]
- Angiulli, G.; De Carlo, D.; Isernia, T. Matching fluid influence on field scattered from breast tumour: Analysis using 3D realistic numerical phantoms. Electron. Lett. 2012, 48, 13–14. [Google Scholar] [CrossRef]
- Lui, H.S.; Fhager, A. On the matching medium for microwave stroke diagnosis. Biomed. Phys. Eng. Express 2019, 5, 045020. [Google Scholar] [CrossRef]
- Scapaticci, R.; Di Donato, L.; Catapano, I.; Crocco, L. A feasibility study on microwave imaging for brain stroke monitoring. Prog. Electromagn. Res. 2012, 40, 305–324. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, C.; Zakaria, A.; LoVetri, J.; Pistorius, S. A study of matching fluid loss in a biomedical microwave tomography system. Med. Phys. 2013, 40, 023101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahsan, S.; Guo, Z.; Miao, Z.; Sotiriou, I.; Koutsoupidou, M.; Kallos, E.; Palikaras, G.; Kosmas, P. Design and experimental validation of a multiple-frequency microwave tomography system employing the DBIM-TwIST algorithm. Sensors 2018, 18, 3491. [Google Scholar] [CrossRef] [Green Version]
- Lazebnik, M.; Madsen, E.L.; Frank, G.R.; Hagness, S.C. Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications. Phys. Med. Biol. 2005, 50, 4245. [Google Scholar] [CrossRef]
- Chen, Y.; Gunawan, E.; Low, K.S.; Wang, S.C.; Kim, Y.; Soh, C.B. Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis. IEEE Trans. Antennas Propag. 2007, 55, 194–204. [Google Scholar] [CrossRef]
- Jafari, H.M.; Deen, M.J.; Hranilovic, S.; Nikolova, N.K. A study of ultrawideband antennas for near-field imaging. IEEE Trans. Antennas Propag. 2007, 55, 1184–1188. [Google Scholar] [CrossRef]
- La Gioia, A.; Porter, E.; Merunka, I.; Shahzad, A.; Salahuddin, S.; Jones, M.; O’Halloran, M. Open-ended coaxial probe technique for dielectric measurement of biological tissues: Challenges and common practices. Diagnostics 2018, 8, 40. [Google Scholar] [CrossRef] [Green Version]
- N1500A Materials Measurement Suite Technical Overview. 2018. Available online: https://www.keysight.com/at/de/assets/7018-04630/technical-overviews/5992-0263.pdf (accessed on 5 January 2021).
- Teppati, V.; Ferrero, A.; Sayed, M. Modern RF and Microwave Measurement Techniques; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Ma, Y.; Vileno, E.; Suib, S.L.; Dutta, P.K. Synthesis of tetragonal BaTiO3 by microwave heating and conventional heating. Chem. Mater. 1997, 9, 3023–3031. [Google Scholar] [CrossRef]
- Kolen’ko, Y.V.; Kovnir, K.A.; Neira, I.S.; Taniguchi, T.; Ishigaki, T.; Watanabe, T.; Sakamoto, N.; Yoshimura, M. A novel, controlled, and high-yield solvothermal drying route to nanosized barium titanate powders. J. Phys. Chem. C 2007, 111, 7306–7318. [Google Scholar] [CrossRef]
- Arlt, G.; Hennings, D.; De With, G. Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 1985, 58, 1619–1625. [Google Scholar] [CrossRef] [Green Version]
- Pant, H.; Patra, M.; Verma, A.; Vadera, S.; Kumar, N. Study of the dielectric properties of barium titanate–polymer composites. Acta Mater. 2006, 54, 3163–3169. [Google Scholar] [CrossRef]
- Genchi, G.G.; Marino, A.; Rocca, A.; Mattoli, V.; Ciofani, G. Barium titanate nanoparticles: Promising multitasking vectors in nanomedicine. Nanotechnology 2016, 27, 232001. [Google Scholar] [CrossRef]
- Wolf, M.P.; Salieb-Beugelaar, G.B.; Hunziker, P. PDMS with designer functionalities—Properties, modifications strategies, and applications. Prog. Polym. Sci. 2018, 83, 97–134. [Google Scholar] [CrossRef]
- McDonald, J.C.; Duffy, D.C.; Anderson, J.R.; Chiu, D.T.; Wu, H.; Schueller, O.J.; Whitesides, G.M. Fabrication of microfluidic systems in poly (dimethylsiloxane). Electrophor. Int. J. 2000, 21, 27–40. [Google Scholar] [CrossRef]
- Lee, J.N.; Park, C.; Whitesides, G.M. Solvent compatibility of poly (dimethylsiloxane)-based microfluidic devices. Anal. Chem. 2003, 75, 6544–6554. [Google Scholar] [CrossRef]
- Rodriguez-Duarte, D.O.; Vasquez, J.A.T.; Scapaticci, R.; Crocco, L.; Vipiana, F. Brick-Shaped Antenna Module for Microwave Brain Imaging Systems. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2057–2061. [Google Scholar] [CrossRef]
- Miao, Z.; Kosmas, P. Multiple-frequency DBIM-TwIST algorithm for microwave breast imaging. IEEE Trans. Antennas Propag. 2017, 65, 2507–2516. [Google Scholar] [CrossRef] [Green Version]
BaTiO(%) | PDMS(%) | |
---|---|---|
MUT1 | 10 | 90 |
MUT2 | 20 | 80 |
MUT3 | 30 | 70 |
MUT4 | 50 | 50 |
MUT5 | 70 | 30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moradpour, A.; Karadima, O.; Alic, I.; Ragulskis, M.; Kienberger, F.; Kosmas, P. Development of a Solid and Flexible Matching Medium for Microwave Medical Diagnostic Systems. Diagnostics 2021, 11, 550. https://doi.org/10.3390/diagnostics11030550
Moradpour A, Karadima O, Alic I, Ragulskis M, Kienberger F, Kosmas P. Development of a Solid and Flexible Matching Medium for Microwave Medical Diagnostic Systems. Diagnostics. 2021; 11(3):550. https://doi.org/10.3390/diagnostics11030550
Chicago/Turabian StyleMoradpour, Amin, Olympia Karadima, Ivan Alic, Mykolas Ragulskis, Ferry Kienberger, and Panagiotis Kosmas. 2021. "Development of a Solid and Flexible Matching Medium for Microwave Medical Diagnostic Systems" Diagnostics 11, no. 3: 550. https://doi.org/10.3390/diagnostics11030550
APA StyleMoradpour, A., Karadima, O., Alic, I., Ragulskis, M., Kienberger, F., & Kosmas, P. (2021). Development of a Solid and Flexible Matching Medium for Microwave Medical Diagnostic Systems. Diagnostics, 11(3), 550. https://doi.org/10.3390/diagnostics11030550