Sexual Dimorphisms and Asymmetries of the Thalamo-Cortical Pathways and Subcortical Grey Matter of Term Born Healthy Neonates: An Investigation with Diffusion Tensor MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Image Acquisition and Analysis
2.2.1. Image Processing
2.2.2. Statistical Data Analysis
3. Results
3.1. Left-Right Asymmetry Girls and Boys Combined
3.2. Left–Right Asymmetry in the Girl Group
3.3. Left–Right Asymmetry in the Boy Group
3.4. Hemispheric Dominance by Group
3.5. Gender Dimorphism
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Fama, R.; Sullivan, E.V. Thalamic structures and associated cognitive functions: Relations with age and aging. Neurosci. Biobehav. Rev. 2015, 54, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Steiner, H.; Tseng, K.Y. Handbook of Basal Ganglia Structure and Function; Academic Press: New York, NY, USA, 2010. [Google Scholar]
- Ouyang, M.; Dubois, J.; Yu, Q.; Mukherjee, P.; Huang, H. Delineation of early brain development from fetuses to infants with diffusion MRI and beyond. NeuroImage 2019, 185, 836–850. [Google Scholar] [CrossRef]
- Poh, J.S.; Li, Y.; Ratnarajah, N.; Fortier, M.V.; Chong, Y.-S.; Kwek, K.; Saw, S.-M.; Gluckman, P.D.; Meaney, M.J.; Qiu, A. Developmental synchrony of thalamocortical circuits in the neonatal brain. NeuroImage 2015, 116, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Qiu, A.; Mori, S.; Miller, M.I. Diffusion Tensor Imaging for Understanding Brain Development in Early Life. Annu. Rev. Psychol. 2015, 66, 853–876. [Google Scholar] [CrossRef] [Green Version]
- Silbereis, J.C.; Pochareddy, S.; Zhu, Y.; Li, M.; Sestan, N. The Cellular and Molecular Landscapes of the Developing Human Central Nervous System. Neuron 2016, 89, 248–268. [Google Scholar] [CrossRef] [Green Version]
- Huttenlocher, P.R.; Dabholkar, A.S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 1997, 387, 167–178. [Google Scholar] [CrossRef]
- Bystron, I.; Blakemore, C.; Rakic, P. Development of the human cerebral cortex: Boulder Committee revisited. Nat. Rev. Neurosci. 2008, 9, 110–122. [Google Scholar] [CrossRef] [PubMed]
- Kostović, I.; Jovanov-Milosević, N. The development of cerebral connections during the first 20–45 weeks3 gestation. Semin. Fetal Neonatal. Med. 2006, 11, 415–422. [Google Scholar] [CrossRef]
- Matsuzawa, J.; Matsui, M.; Konishi, T.; Noguchi, K.; Gur, R.C.; Bilker, W.; Miyawaki, T. Age-related volumetric changes of brain gray and white matter in healthy infants and children. Cereb. Cortex 2001, 11, 335–342. [Google Scholar] [CrossRef] [Green Version]
- Holland, D.; Chang, L.; Ernst, T.M.; Curran, M.; Buchthal, S.D.; Alicata, D.; Skranes, J.; Johansen, H.; Hernandez, A.; Yamakawa, R.; et al. Structural Growth Trajectories and Rates of Change in the First 3 Months of Infant Brain Development. JAMA Neurol. 2014, 71, 1266–1274. [Google Scholar] [CrossRef] [PubMed]
- Toulmin, H.; Beckmann, C.F.; O’Muircheartaigh, J.; Ball, G.; Nongena, P.; Makropoulos, A.; Ederies, A.; Counsell, S.J.; Kennea, N.; Arichi, T.; et al. Specialization and integration of functional thalamocortical connectivity in the human infant. Proc. Natl. Acad. Sci. USA 2015, 112, 6485–6490. [Google Scholar] [CrossRef] [Green Version]
- Jones, E.G. The Thalamus, 2nd ed.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Ceschin, R.; Wisnowski, J.L.; Paquette, L.B.; Nelson, M.D.; Blüml, S.; Panigrahy, A. Developmental synergy between thalamic structure and interhemispheric connectivity in the visual system of preterm infants. NeuroImage 2015, 8, 462–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kostovic, I.; Judas, M. The development of the subplate and thalamocortical connections in the human foetal brain. Acta Paediatr. 2010, 99, 1119–1127. [Google Scholar] [CrossRef] [PubMed]
- Kostović, I.; Jovanov-Milošević, N.; Radoš, M.; Sedmak, G.; Benjak, V.; Kostović-Srzentić, M.; Vasung, L.; Čuljat, M.; Radoš, M.; Hüppi, P.; et al. Perinatal and early postnatal reorganization of the subplate and related cellular compartments in the human cerebral wall as revealed by histological and MRI approaches. Beiträge und Referate zur Anatomie und Entwickelungsgeschichte 2012, 219, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Brain injury in premature infants: A complex amalgam of destructive and developmental disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef] [Green Version]
- Dean, J.M.; McClendon, E.; Hansen, K.; Azimi-Zonooz, A.; Chen, K.; Riddle, A.; Gong, X.; Sharifnia, E.; Hagen, M.; Ahmad, T.; et al. Prenatal cerebral ischemia disrupts MRI-defined cortical microstructure through disturbances in neuronal arborization. Sci. Transl. Med. 2013, 5, 168ra7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Molnár, Z.; Higashi, S.; López-Bendito, G. Choreography of early thalamocortical development. Cereb. Cortex 2003, 13, 661–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haber, S.N.; Calzavara, R. The cortico-basal ganglia integrative network: The role of the thalamus. Brain Res. Bull. 2009, 78, 69–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, G.; Srinivasan, L.; Aljabar, P.; Counsell, S.J.; Durighel, G.; Hajnal, J.V.; Rutherford, M.A.; Edwards, A.D. Development of cortical microstructure in the preterm human brain. Proc. Natl. Acad. Sci. USA 2013, 110, 9541–9546. [Google Scholar] [CrossRef] [Green Version]
- Ball, G.; Boardman, J.P.; Aljabar, P.; Pandit, A.; Arichi, T.; Merchant, N.; Rueckert, D.; Edwards, A.D.; Counsell, S.J. The influence of preterm birth on the developing thalamocortical connectome. Cortex 2013, 49, 1711–1721. [Google Scholar] [CrossRef]
- Ball, G.; Aljabar, P.; Zebari, S.; Tusor, N.; Arichi, T.; Merchant, N.; Robinson, E.C.; Ogundipe, E.; Rueckert, D.; Edwards, A.D.; et al. Rich-club organization of the newborn human brain. Proc. Natl. Acad. Sci. USA 2014, 111, 7456–7461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McQuillen, P.S.; Sheldon, R.A.; Shatz, C.J.; Ferriero, D.M. Selective Vulnerability of Subplate Neurons after Early Neonatal Hypoxia-Ischemia. J. Neurosci. 2003, 23, 3308–3315. [Google Scholar] [CrossRef] [Green Version]
- Ligam, P.; Haynes, R.L.; Folkerth, R.D.; Liu, L.; Yang, M.; Volpe, J.J.; Kinney, H.C. Thalamic Damage in Periventricular Leukomalacia: Novel Pathologic Observations Relevant to Cognitive Deficits in Survivors of Prematurity. Pediatr. Res. 2009, 65, 524–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bechara, A.; Tranel, D.; Damasio, H. Characterization of the decision-making deficit of patients with ventromedial prefrontal cortex lesions. Brain 2000, 123, 2189–2202. [Google Scholar] [CrossRef] [Green Version]
- Sonuga-Barke, E.J. Psychological heterogeneity in AD/HD—A dual pathway model of behaviour and cognition. Behav. Brain Res. 2002, 130, 29–36. [Google Scholar] [CrossRef]
- Toplak, M.E.; Jain, U.; Tannock, R. Executive and motivational processes in adolescents with Attention-Deficit-Hyperactivity Disorder (ADHD). Behav. Brain Funct. 2005, 1, 10–1186. [Google Scholar] [CrossRef] [Green Version]
- Joseph, R.M.; Tager–Flusberg, H. The relationship of theory of mind and executive functions to symptom type and severity in children with autism. Dev. Psychopathol. 2004, 16, 137–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robinson, S.; Goddard, L.; Dritschel, B.; Wisley, M.; Howlin, P. Executive functions in children with Autism Spectrum Disorders. Brain Cogn. 2009, 71, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Clouchoux, C.; Kudelski, D.; Gholipour, A.; Warfield, S.K.; Viseur, S.; Bouyssi-Kobar, M.; Mari, J.-L.; Evans, A.C.; Du Plessis, A.J.; Limperopoulos, C. Quantitative in vivo MRI measurement of cortical development in the fetus. Beiträge und Referate zur Anatomie und Entwickelungsgeschichte 2011, 217, 127–139. [Google Scholar] [CrossRef]
- Andescavage, N.N.; du Plessis, A.; McCarter, R.; Serag, A.; Evangelou, I.; Vezina, G.; Robertson, R.; Limperopoulos, C. Complex trajectories of brain development in the healthy human fetus. Cereb. Cortex 2017, 27, 5274–5283. [Google Scholar] [CrossRef]
- McKinstry, R.C.; Mathur, A.; Miller, J.H.; Ozcan, A.; Snyder, A.Z.; Schefft, G.L.; Almli, C.R.; Shiran, S.I.; Conturo, T.E.; Neil, J.J. Radial Organization of Developing Preterm Human Cerebral Cortex Revealed by Non-invasive Water Diffusion Anisotropy MRI. Cereb. Cortex 2002, 12, 1237–1243. [Google Scholar] [CrossRef]
- Mrzljak, L.; Uylings, H.B.M.; Kostovic, I.; Van Eden, C.G. Prenatal development of neurons in the human prefrontal cortex: I. A qualitative Golgi study. J. Comp. Neurol. 1988, 271, 355–386. [Google Scholar] [CrossRef]
- Levman, J.; MacDonald, P.; Lim, A.R.; Forgeron, C.; Takahashi, E. A pediatric structural MRI analysis of healthy brain development from newborns to young adults. Hum. Brain Mapp. 2017, 38, 5931–5942. [Google Scholar] [CrossRef] [Green Version]
- Cantalupo, C.; Hopkins, W.D. Asymmetric Broca’s area in great apes. Nat. Cell Biol. 2001, 414, 505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amunts, K.; Schlaug, G.; Schleicher, A.; Steinmetz, H.; Dabringhaus, A.; Roland, P.E.; Zilles, K. Asymmetry in the human motor cortex and handedness. Neuroimage 1996, 4, 216–222. [Google Scholar] [CrossRef]
- Amunts, K.; Armstrong, E.; Malikovic, A.; Hömke, L.; Mohlberg, H.; Schleicher, A.; Zilles, K. Gender-Specific Left–Right Asymmetries in Human Visual Cortex. J. Neurosci. 2007, 27, 1356–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Good, C.D.; Johnsrude, I.; Ashburner, J.; Henson, R.N.; Friston, K.J.; Frackowiak, R.S. Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage 2001, 14, 685–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watkins, K.E.; Paus, T.; Lerch, J.; Zijdenbos, A.; Collins, D.; Neelin, P.; Taylor, J.; Worsley, K.; Evans, A. Structural Asymmetries in the Human Brain: A Voxel-based Statistical Analysis of 142 MRI Scans. Cereb. Cortex 2001, 11, 868–877. [Google Scholar] [CrossRef]
- Stiles, J.; Jernigan, T.L. The Basics of Brain Development. Neuropsychol. Rev. 2010, 20, 327–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pineda, R.G.; Tjoeng, T.H.; Vavasseur, C.; Kidokoro, H.; Neil, J.J.; Inder, T. Patterns of Altered Neurobehavior in Preterm Infants within the Neonatal Intensive Care Unit. J. Pediatr. 2013, 162, 470–476.e1. [Google Scholar] [CrossRef] [Green Version]
- Pineda, R.G.; Neil, J.; Dierker, D.; Smyser, C.D.; Wallendorf, M.; Kidokoro, H.; Reynolds, L.C.; Walker, S.; Rogers, C.; Mathur, A.M.; et al. Alterations in Brain Structure and Neurodevelopmental Outcome in Preterm Infants Hospitalized in Different Neonatal Intensive Care Unit Environments. J. Pediatr. 2014, 164, 52–60.e2. [Google Scholar] [CrossRef] [Green Version]
- Saadani-Makki, F.; Hagmann, C.; Balédent, O.; Makki, M.I. Early assessment of lateralization and sex influences on the microstructure of the white matter corticospinal tract in healthy term neonates. J. Neurosci. Res. 2019, 97, 480–491. [Google Scholar] [CrossRef] [PubMed]
- Lebel, C.; Walker, L.; Leemans, A.; Phillips, L.; Beaulieu, C. Microstructural maturation of the human brain from childhood to adulthood. NeuroImage 2008, 40, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Dubois, J.; Dehaene-Lambertz, G.; Kulikova, S.; Poupon, C.; Hüppi, P.S.; Hertz-Pannier, L. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 2014, 276, 48–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, J.; Cahill-Rowley, K.; Vassar, R.; Yeom, K.W.; Stecher, X.; Stevenson, D.K.; Hintz, S.R.; Barnea-Goraly, N. Neonatal brain microstructure correlates of neurodevelopment and gait in preterm children 18–22 mo of age: An MRI and DTI study. Pediatr. Res. 2015, 78, 700–708. [Google Scholar] [CrossRef] [PubMed]
- Ratnarajah, N.; Rifkin-Graboi, A.; Fortier, M.V.; Chong, Y.S.; Kwek, K.; Saw, S.-M.; Godfrey, K.M.; Gluckman, P.D.; Meaney, M.J.; Qiu, A. Structural connectivity asymmetry in the neonatal brain. NeuroImage 2013, 75, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Hendren, R.L.; De Backer, I.; Pandina, G.J. Review of neuroimaging studies of child and adolescent psychiatric disorders from the past 10 years. J. Am. Acad. Child Adolesc. Psychiatry 2000, 39, 815–828. [Google Scholar] [CrossRef]
- Oertel-Knöchel, V.; Linden, D.E.J. Cerebral Asymmetry in Schizophrenia. Neuroscientist 2011, 17, 456–467. [Google Scholar] [CrossRef]
- Herbert, M.R.; Ziegler, D.A.; Deutsch, C.K.; O’Brien, L.M.; Kennedy, D.N.; Filipek, P.A.; Bakardjiev, A.I.; Hodgson, J.; Takeoka, M.; Makris, N.; et al. Brain asymmetries in autism and developmental language disorder: A nested whole-brain analysis. Brain 2004, 128, 213–226. [Google Scholar] [CrossRef] [Green Version]
- Makki, M.I.; Behen, M.; Bhatt, A.; Wilson, B.; Chugani, H.T. Microstructural abnormalities of striatum and thalamus in children with Tourette syndrome. Mov. Disord. Off. J. Mov. Disord. Soc. 2008, 23, 2349–2356. [Google Scholar] [CrossRef]
- Alkonyi, B.; Chugani, H.T.; Behen, M.; Halverson, S.; Helder, E.; Makki, M.I.; Juhász, C. The role of the thalamus in neuro-cognitive dysfunction in early unilateral hemispheric injury: A multimodality imaging study of children with Sturge-Weber syndrome. Eur. J. Paediatr. Neurol. 2010, 14, 425–433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, T.; Walsh, C.A. Molecular approaches to brain asymmetry and handedness. Nat. Rev. Neurosci. 2006, 7, 655–662. [Google Scholar] [CrossRef] [PubMed]
- Bishop, D.V.M. Cerebral Asymmetry and Language Development: Cause, Correlate, or Consequence? Science 2013, 340, 1230531. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Vasung, L.; Marami, B.; Rollins, C.K.; Afacan, O.; Ortinau, C.M.; Yang, E.; Warfield, S.K.; Gholipour, A. Fetal brain growth portrayed by a spatiotemporal diffusion tensor MRI atlas computed from in utero images. NeuroImage 2019, 185, 593–608. [Google Scholar] [CrossRef] [PubMed]
- Hering-Hanit, R.; Achiron, R.; Lipitz, S.; Achiron, A. Asymmetry of fetal cerebral hemispheres: In utero ultrasound study. Arch. Dis. Child. Fetal Neonatal Ed. 2001, 85, F194–F196. [Google Scholar] [CrossRef] [Green Version]
- Gilmore, J.H.; Lin, W.; Prastawa, M.W.; Looney, C.B.; Vetsa, Y.S.K.; Knickmeyer, R.C.; Evans, D.D.; Smith, J.K.; Hamer, R.M.; Lieberman, J.A.; et al. Regional Gray Matter Growth, Sexual Dimorphism, and Cerebral Asymmetry in the Neonatal Brain. J. Neurosci. 2007, 27, 1255–1260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Chen, H.; Wang, J.; Liu, F.; Long, Z.; Wang, Y.; Iturria-Medina, Y.; Zhang, J.; Yu, C.; Chen, H. Handedness- and Hemisphere-Related Differences in Small-World Brain Networks: A Diffusion Tensor Imaging Tractography Study. Brian Connect. Amr. 2014, 1, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puetz, V.B.; Parker, D.; Kohn, N.; Dahmen, B.; Verma, R.; Konrad, K. Altered brain network integrity after childhood maltreatment: A structural connectomic DTI-study. Hum. Brain Mapp. 2017, 38, 855–868. [Google Scholar] [CrossRef] [Green Version]
- Mannerkoski, M.K.; Heiskala, H.J.; Van Leemput, K.; Åberg, L.E.; Raininko, R.; Hämäläinen, J.; Autti, T.H.; Aring, E.L. Subjects With Intellectual Disability and Familial Need for Full-Time Special Education Show Regional Brain Alterations: A Voxel-Based Morphometry Study. Pediatr. Res. 2009, 66, 306–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bültmann, E.; Spineli, L.M.; Hartmann, H.; Lanfermann, H. Measuring in vivo cerebral maturation using age-related T2 relaxation times at 3 T. Brain Dev. 2018, 40, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Draganski, B.; Kherif, F.; Klöppel, S.; Cook, P.A.; Alexander, D.C.; Parker, G.J.M.; Deichmann, R.; Ashburner, J.; Frackowiak, R.S.J. Evidence for Segregated and Integrative Connectivity Patterns in the Human Basal Ganglia. J. Neurosci. 2008, 28, 7143–7152. [Google Scholar] [CrossRef] [Green Version]
- Metzger, C.D.; van der Werf, Y.D.; Walter, M. Functional mapping of thalamic nuclei and their integration into cortico-striatal-thalamo-cortical loops via ultra-high resolution imaging—from animal anatomy to in vivo imaging in humans. Front. Neurosci. 2013, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, J.; Wang, Y.; Ceschin, R.; An, X.; Lao, Y.; Vanderbilt, D.; Nelson, M.D.; Thompson, P.M.; Panigrahy, A.; Leporé, N. A Multivariate Surface-Based Analysis of the Putamen in Premature Newborns: Regional Differences within the Ventral Striatum. PLoS ONE 2013, 8, e66736. [Google Scholar] [CrossRef] [PubMed]
- Lao, Y.; Nguyen, B.; Tsao, S.; Gajawelli, N.; Law, M.; Chui, H.; Weiner, M.; Wang, Y.; Leporé, N. A T1 and DTI fused 3D corpus callosum analysis in MCI subjects with high and low cardiovascular risk profile. NeuroImage 2017, 14, 298–307. [Google Scholar] [CrossRef]
- Dennison, M.; Whittle, S.; Yücel, M.; Vijayakumar, N.; Kline, A.; Simmons, J.G.; Allen, N.B. Mapping subcortical brain maturation during adolescence: Evidence of hemisphere- and sex-specific longitudinal changes. Dev. Sci. 2013, 16, 772–791. [Google Scholar] [CrossRef]
- Koolschijn, P.C.M.; Crone, E.A. Sex differences and structural brain maturation from childhood to early adulthood. Dev. Cogn. Neurosci. 2013, 5, 106–118. [Google Scholar] [CrossRef] [PubMed]
- Guderian, S.; Dzieciol, A.M.; Gadian, D.G.; Jentschke, S.; Doeller, C.F.; Burgess, N.; Mishkin, M.; Vargha-Khadem, F. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation. J. Neurosci. 2015, 35, 14123–14131. [Google Scholar] [CrossRef] [Green Version]
- Dzieciol, A.M.; Bachevalier, J.; Saleem, K.S.; Gadian, D.G.; Saunders, R.; Chong, W.K.; Banks, T.; Mishkin, M.; Vargha-Khadem, F. Hippocampal and diencephalic pathology in developmental amnesia. Cortex 2017, 86, 33–44. [Google Scholar] [CrossRef] [Green Version]
- Geva, S.; Jentschke, S.; Argyropoulos, G.P.; Chong, W.; Gadian, D.G.; Vargha-Khadem, F. Volume reduction of caudate nucleus is associated with movement coordination deficits in patients with hippocampal atrophy due to perinatal hypoxia-ischaemia. NeuroImage 2020, 28, 102429. [Google Scholar] [CrossRef]
- Alcauter, S.; Lin, W.; Smith, J.K.; Short, S.J.; Goldman, B.D.; Reznick, J.S.; Gilmore, J.H.; Gao, W. Development of Thalamocortical Connectivity during Infancy and Its Cognitive Correlations. J. Neurosci. 2014, 34, 9067–9075. [Google Scholar] [CrossRef] [Green Version]
- Ball, G.; Pazderova, L.; Chew, A.; Tusor, N.; Merchant, N.; Arichi, T.; Allsop, J.M.; Cowan, F.M.; Edwards, A.D.; Counsell, S.J. Thalamocortical Connectivity Predicts Cognition in Children Born Preterm. Cereb. Cortex 2015, 25, 4310–4318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Željka, K.; Majić, V.; Vasung, L.; Huang, H.; Kostović, I. Growth of Thalamocortical Fibers to the Somatosensory Cortex in the Human Fetal Brain. Front. Neurosci. 2017, 11, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, C.; Li, Y.; Li, X.; Liu, C.; Wang, M.; Cheng, Y.; Zheng, J.; Yang, J. Associations of gestational age and birth anthropometric indicators with brain white matter maturation in ful-term neonates. Hum. Brain Mapp. 2019, 40, 3620–3630. [Google Scholar] [PubMed] [Green Version]
- Erberich, S.G.; Panigrahy, A.; Friedlich, P.; Seri, I.; Nelson, M.D.; Gilles, F. Somatosensory lateralization in the newborn brain. NeuroImage 2006, 29, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Grantz, K.L.; Hediger, M.L.; Liu, D.; Louis, G.M.B. Fetal growth standards: The NICHD fetal growth study approach in context with INTERGROWTH-21st and the World Health Organization Multicentre Growth Reference Study. Am. J. Obstet. Gynecol. 2018, 218, S641–S655. [Google Scholar] [CrossRef] [Green Version]
Gestation Age (GA) | N | Minimum | Maximum | Mean | Median |
---|---|---|---|---|---|
Girls + Boys combined | 28 | 38 W + 3 D | 44 W + 1 D | 41 W ± 6 D | 42 W + 0 D |
Girls | 13 | 38 W + 3 D | 43 W + 3 D | 41 W ± 6 D | 42 W + 6 D |
Boys | 15 | 38 W + 3 D | 44 W + 1 D | 41 W ± 6 D | 42 W + 0 D |
Girls + Boys | AD 10−3 mm2/s | RD 10−3 mm2/s | ADC 10−3 mm2/s | FA | ||||
---|---|---|---|---|---|---|---|---|
Left | Right | Left | Right | Left | Right | Left | Right | |
Thalamo-Cortical | ||||||||
Mean | 1.596 | 1.617 | 1.047 | 1.0681 | 1.230 | 1.247 | 0.264 | 0.265 |
SD | ±0.073 | ±0.068 | ±0.065 | ±0.059 | ±0.066 | ±0.060 | ±0.015 | ±0.017 |
L vs. R (p) | 0.003 | 0.003 | 0.001 | 0.772 | ||||
Thalamus | ||||||||
Mean | 1.298 | 1.311 | 0.999 | 1.003 | 1.099 | 1.106 | 0.177 | 0.182 |
SD | ±0.054 | ±0.055 | ±0.045 | ±0.038 | ±0.045 | ±0.042 | ±0.017 | ±0.015 |
L vs. R (p) | 0.009 | 0.308 | 0.023 * | 0.116 | ||||
Putamen | ||||||||
Mean | 1.311 | 1.303 | 1.119 | 1.128 | 1.183 | 1.186 | 0.104 | 0.095 |
SD | ±0.078 | ±0.066 | ±0.054 | ±0.049 | ±0.054 | ±0.048 | ±0.032 | ±0.026 |
L vs. R (p) | 0.597 | 0.086 | 0.267 | 0.015 * | ||||
Caudate Nucleus | ||||||||
Mean | 1.340 | 1.332 | 1.180 | 1.173 | 1.233 | 1.226 | 0.085 | 0.085 |
SD | ±0.078 | ±0.078 | ±0.057 | ±0.057 | ±0.058 | ±0.057 | ±0.029 | ±0.027 |
L vs. R (p) | 0.201 | 0.049 | 0.040 | 0.939 | ||||
Globus Pallidus | ||||||||
Mean | 1.376 | 1.372 | 1.080 | 1.071 | 1.179 | 1.171 | 0.163 | 0.164 |
SD | ±0.070 | ±0.064 | ±0.050 | ±0.054 | ±0.051 | ±0.052 | ±0.024 | ±0.025 |
L vs. R (p) | 0.906 | 0.06 | 0.191 | 0.298 |
Paired t-Test | AD 10−3 mm2/s | RD 10−3 mm2/s | ADC 10−3 mm2/s | FA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Left | Right | p | Left | Right | p | Left | Right | p | Left | Right | p | ||
Girls | |||||||||||||
TH-C | M | 1.579 | 1.601 | 0.004 | 1.032 | 1.047 | 0.010 | 1.215 | 1.232 | 0.001 | 0.266 | 0.267 | 0.821 |
SD | 0.037 | 0.039 | 0.035 | 0.036 | 0.034 | 0.031 | 0.136 | 0.019 | |||||
TH | M | 1.300 | 1.311 | 0.04 | 0.999 | 1.001 | 0.820 | 1.099 | 1.104 | 0.430 | 0.179 | 0.185 | 0.068 |
SD | 0.096 | 0.046 | 0.035 | 0.036 | 0.036 | 0.029 | 0.012 | 0.015 | |||||
PT | M | 1.296 | 1.292 | 0.597 | 1.114 | 1.128 | 0.086 | 1.175 | 1.182 | 0.267 | 0.100 | 0.089 | 0.015 |
SD | 0.041 | 0.028 | 0.039 | 0.035 | 0.035 | 0.031 | 0.021 | 0.013 | |||||
CN | M | 1.338 | 1.322 | 0.090 | 1.171 | 1.166 | 0.539 | 1.226 | 1.218 | 0.223 | 0.089 | 0.084 | 0.134 |
SD | 0.047 | 0.036 | 0.034 | 0.039 | 0.032 | 0.033 | 0.023 | 0.020 | |||||
GP | M | 1.358 | 1.359 | 0.906 | 1.068 | 1.056 | 0.067 | 1.165 | 1.157 | 0.191 | 0.162 | 0.167 | 0.298 |
SD | 0.036 | 0.035 | 0.031 | 0.036 | 0.029 | 0.032 | 0.017 | 0.019 |
Paired t-Test | AD 10−3 mm2/s | RD 10−3 mm2/s | ADC 10−3 mm2/s | FA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Left | Right | p | Left | Right | p | Left | Right | p | Left | Right | p | ||
Boys | |||||||||||||
THC | M | 1.061 | 1.632 | 0.085 | 1.060 | 1.074 | 0.083 | 1.244 | 1.260 | 0.070 | 0.262 | 0.263 | 0.862 |
SD | 0.095 | 0.086 | 0.083 | 0.074 | 0.086 | 0.077 | 0.017 | 0.016 | |||||
TH | M | 1.297 | 1.312 | 0.081 | 1.002 | 1.006 | 0.047 | 1.100 | 1.108 | 0.005 | 0.175 | 0.180 | 0.3345 |
SD | 0.062 | 0.032 | 0.052 | 0.047 | 0.052 | 0.050 | 0.020 | 0.015 | |||||
PT | M | 1.324 | 1.313 | 0.338 | 1.124 | 1.128 | 0.662 | 1.191 | 1.189 | 0.864 | 0.107 | 0.099 | 0.044 |
SD | 0.100 | 0.087 | 0.066 | 0.059 | 0.066 | 0.059 | 0.039 | 0.034 | |||||
CN | M | 1.342 | 1.340 | 0.801 | 1.188 | 1.177 | 0.043 * | 1.240 | 1.232 | 0.079 | 0.080 | 0.086 | 0.279 |
SD | 0.096 | 0.099 | 0.070 | 0.067 | 0.072 | 0.071 | 0.032 | 0.032 | |||||
GP | M | 1.392 | 1.393 | 0.392 | 1.090 | 1.084 | 0.351 | 1.190 | 1.184 | 0.287 | 0.165 | 0.162 | 0.443 |
SD | 0.087 | 0.080 | 0.061 | 0.064 | 0.063 | 0.063 | 0.028 | 0.029 |
AI % | AD | RD | ADC | FA | |
---|---|---|---|---|---|
Thalamo-cortical | Girls | −1.37 ± 1.42 (R) | −1.45 ± 1.79 (R) | −1.43 ± 1.26 (R) | −0.20 ± 4.03 (R) |
Boys | −1.23 ± 2.73 (R) | −1.23 ± 2.88 (R) | −1.22 ± 2.63 (R) | −0.38 ± 4.53 (R) | |
Combined | −1.37 ± 2.12 (R) | −1.41 ± 2.27 (R) | −1.40 ± 1.91 (R) | −0.18 ± 3.88 (R) | |
Thalamus | Girls | −1.12 ± 2.02 (R) | 0.06 ± 2.44 (L) | −0.40 ± 1.73 (R) | −4.40 ± 9.26 (R) |
Boys | −0.85 ± 1.76 (R) | −0.93 ± 1.63 (R) | −0.89 ± 1.05 (R) | −1.37 ± 8.66 (R) | |
Combined | −0.97 ± 1.89 (R) | −0.48 ± 2.11 (R) | −0.67 ± 1.43 (R) | −2.73 ± 9.07 (R) | |
Putamen | Girls | 0.06 ± 2.04 (L) | −1.50 ± 2.18 (R) | −0.92 ± 1.84 (R) | 10.14 ± 12.78 (L) |
Boys | 0.76 ± 3.37 (L) | −0.35 ± 2.44 (R) | 0.076 ± 2.46 (L) | 7.36 ± 13.56 (L) | |
Combined | 0.54 ± 2.82 (L) | −0.75 ± 2.38 (R) | −0.27 ± 2.25 (R) | 8.52 ± 12.80 (L) | |
Caudate Nucleus | Girls | 1.01 ± 2.40 (L) | 0.30 ± 0.02 (L) | 0.56 ± 1.69 (L) | 4.87 ± 16.08 (L) |
Boys | 0.16 ± 2.09 (L) | 0.90 ± 1.56 (L) | 0.63 ± 1.27 (L) | −5.84 ± 20.67 (R) | |
Combined | 0.56 ± 2.24 (L) | 0.61 ± 1.58 (L) | 0.59 ± 1.45 (L) | −0.87 ± 19.13 (R) | |
Globus Pallidus | Girls | −0.38 ± 2.30 (R) | 0.99 ± 2.09(L) | 0.45 ± 1.65 (L) | −3.79 ± 10.87 (R) |
Boys | 0.82 ± 2.87 (L) | 0.55 ± 2.13 (L) | 0.66 ± 2.00 (L) | 1.62 ± 9.22 (L) | |
Combined | 0.27 ± 2.57(L) | 0.84 ± 2.08 (L) | 0.62 ± 1.84 (L) | −0.59 ± 9.66 (R) |
General Linear Model - Analysis of Covariance | AD 10−3 mm2/s | RD 10−3 mm2/s | ADC 10−3 mm2/s | FA | ||||
---|---|---|---|---|---|---|---|---|
Left | Right | Left | Right | Left | Right | Left | Right | |
Girls vs. Boys | ||||||||
Thalamo-cortical | 0.297 | 0.255 | 0.270 | 0.245 | 0.271 | 0.231 | 0.497 | 0.536 |
Thalamus | 0.950 | 0.803 | 0.851 | 0.597 | 0.881 | 0.832 | 0.789 | 0.130 |
Putamen | 0.351 | 0.401 | 0.639 | 0.990 | 0.440 | 0.702 | 0.584 | 0.376 |
Caudate Nucleus | 0.720 | 0.440 | 0.415 | 0.632 | 0.481 | 0.506 | 0.615 | 0.695 |
Globus-Pallidus | 0.207 | 0.324 | 0.269 | 0.166 | 0.191 | 0.174 | 0.763 | 0.556 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saadani-Makki, F.; Aarabi, A.; Fouladivanda, M.; Kazemi, K.; Makki, M. Sexual Dimorphisms and Asymmetries of the Thalamo-Cortical Pathways and Subcortical Grey Matter of Term Born Healthy Neonates: An Investigation with Diffusion Tensor MRI. Diagnostics 2021, 11, 560. https://doi.org/10.3390/diagnostics11030560
Saadani-Makki F, Aarabi A, Fouladivanda M, Kazemi K, Makki M. Sexual Dimorphisms and Asymmetries of the Thalamo-Cortical Pathways and Subcortical Grey Matter of Term Born Healthy Neonates: An Investigation with Diffusion Tensor MRI. Diagnostics. 2021; 11(3):560. https://doi.org/10.3390/diagnostics11030560
Chicago/Turabian StyleSaadani-Makki, Fadoua, Ardalan Aarabi, Mahshid Fouladivanda, Karman Kazemi, and Malek Makki. 2021. "Sexual Dimorphisms and Asymmetries of the Thalamo-Cortical Pathways and Subcortical Grey Matter of Term Born Healthy Neonates: An Investigation with Diffusion Tensor MRI" Diagnostics 11, no. 3: 560. https://doi.org/10.3390/diagnostics11030560
APA StyleSaadani-Makki, F., Aarabi, A., Fouladivanda, M., Kazemi, K., & Makki, M. (2021). Sexual Dimorphisms and Asymmetries of the Thalamo-Cortical Pathways and Subcortical Grey Matter of Term Born Healthy Neonates: An Investigation with Diffusion Tensor MRI. Diagnostics, 11(3), 560. https://doi.org/10.3390/diagnostics11030560