Cytokine and Chemokine mRNA Expressions after Mycobacterium tuberculosis-Specific Antigen Stimulation in Whole Blood from Hemodialysis Patients with Latent Tuberculosis Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Study Procedures
2.3. QuantiFERON-TB Gold In-Tube (QFT-GIT) Assay
2.4. Total RNA Isolation and Reverse Transcription
2.5. qRT-PCR TaqMan Probe Assay Targeting Multiple Immune Marker mRNAs
2.6. Statistical Analysis
3. Results
3.1. Characteristics of the Study Population
3.2. QFT-GIT Test Results and Previous QFT-GIT Test Results within 6 Months
3.3. Comparison of Target Gene mRNA Expression Levels after Stimulation of MTB-Specific Ags for 24 h According to LTBI Diagnosis
3.4. Comparison of Target Gene mRNA Expression Levels after Stimulation of MTB-Specific Antigens for 24 h According to QFT-GIT Response Groups
3.5. Comparison of Target Gene mRNA Expression Levels after Stimulation of MTB-Specific Antigens for 24 h According to QFT-GIT Response Groups in HD
3.6. Comparison of Clinical Features and mRNA Expression of Cytokines and Chemokines between IGRA Reversion and Persistent Group in HD Group
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Current Renal Replacement Therapy in Korea-Insan Memorial Dialysis Registry 2018. ESRD Registry Committee, Korean Society of Nephrology. Available online: http://www.ksn.or.kr (accessed on 21 May 2020).
- Christopoulos, A.I.; Diamantopoulos, A.A.; Dimopoulos, P.A.; Goumenos, D.S.; A Barbalias, G. Risk factors for tuberculosis in dialysis patients: A prospective multi-center clinical trial. BMC Nephrol. 2009, 10, 36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.A.; Lee, H.W.; Hwang, S.S.; Um, S.-W.; Han, S.K.; Shim, Y.-S.; Yim, J.-J. Usefulness of Whole-Blood Interferon-γ Assay and Interferon-γ Enzyme-Linked Immunospot Assay in the Diagnosis of Active Pulmonary Tuberculosis. Chest 2007, 132, 959–965. [Google Scholar] [CrossRef] [PubMed]
- Metcalfe, J.Z.; Cattamanchi, A.; McCulloch, C.E.; Lew, J.D.; Ha, N.P.; Graviss, E.A. Test Variability of the QuantiFERON-TB Gold In-Tube Assay in Clinical Practice. Am. J. Respir. Crit. Care Med. 2013, 187, 206–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Southern, J.; Sridhar, S.; Tsou, C.-Y.; Hopkins, S.; Collier, S.; Nikolayevskyy, V.; Lozewicz, S.; Lalvani, A.; Abubakar, I.; Lipman, M. Discordance in latent tuberculosis (TB) test results in patients with end-stage renal disease. Public Health 2019, 166, 34–39. [Google Scholar] [CrossRef] [PubMed]
- Ringshausen, F.C.; Nienhaus, A.; Costa, J.T.; Knoop, H.; Schlösser, S.; Schultze-Werninghaus, G.; Rohde, G. Within-Subject Variability of Mycobacterium tuberculosis-Specific Gamma Interferon Responses in German Health Care Workers. Clin. Vaccine Immunol. 2011, 18, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Schablon, A.; Nienhaus, A.; Ringshausen, F.C.; Preisser, A.M.; Peters, C. Occupational Screening for Tuberculosis and the Use of a Borderline Zone for Interpretation of the IGRA in German Healthcare Workers. PLoS ONE 2014, 9, e115322. [Google Scholar] [CrossRef] [Green Version]
- Nemes, E.; Rozot, V.; Geldenhuys, H.; Bilek, N.; Mabwe, S.; Abrahams, D.; Makhethe, L.; Erasmus, M.; Keyser, A.; Toefy, A.; et al. Optimization and Interpretation of Serial QuantiFERON Testing to Measure Acquisition of Mycobacterium tuberculosis Infection. Am. J. Respir. Crit. Care Med. 2017, 196, 638–648. [Google Scholar] [CrossRef]
- Mori, T.; Sakatani, M.; Yamagishi, F.; Takashima, T.; Kawabe, Y.; Nagao, K.; Shigeto, E.; Harada, N.; Mitarai, S.; Okada, M.; et al. Specific Detection of Tuberculosis Infection: An interferon-gamma-based assay using new antigens. Am. J. Respir. Crit. Care Med. 2004, 170, 59–64. [Google Scholar] [CrossRef]
- Mannhalter, C.; Koizar, D.; Mitterbauer, G. Evaluation of RNA Isolation Methods and Reference Genes for RT-PCR Analyses of Rare Target RNA. Clin. Chem. Lab. Med. 2000, 38, 171–177. [Google Scholar] [CrossRef]
- Kubista, M.; Andrade, J.M.; Bengtsson, M.; Forootan, A.; Jonák, J.; Lind, K.; Sindelka, R.; Sjöback, R.; Sjögreen, B.; Strömbom, L.; et al. The real-time polymerase chain reaction. Mol. Asp. Med. 2006, 27, 95–125. [Google Scholar] [CrossRef]
- Torrado, E.; Fountain, J.J.; Liao, M.; Tighe, M.; Reiley, W.W.; Lai, R.P.; Meintjes, G.; Pearl, J.E.; Chen, X.; Zak, D.E.; et al. Interleukin 27R regulates CD4+ T cell phenotype and impacts protective immunity during Mycobacterium tuberculosis infection. J. Exp. Med. 2015, 212, 1449–1463. [Google Scholar] [CrossRef] [Green Version]
- Latorre, I.; Mínguez, S.; Carrascosa, J.-M.; Naves, J.; Villar-Hernández, R.; Muriel, B.; Prat, C.; García-García, E.; Casas, I.; Domènech, E.; et al. Immune-mediated inflammatory diseases differently affect IGRAs’ accuracy for latent tuberculosis infection diagnosis in clinical practice. PLoS ONE 2017, 12, e0189202. [Google Scholar] [CrossRef] [Green Version]
- Sakai, S.; Kauffman, K.D.; Schenkel, J.M.; McBerry, C.C.; Mayer-Barber, K.D.; Masopust, D.; Barber, D.L. Cutting Edge: Control of Mycobacterium tuberculosis Infection by a Subset of Lung Parenchyma–Homing CD4 T Cells. J. Immunol. 2014, 192, 2965–2969. [Google Scholar] [CrossRef] [Green Version]
- Moguche, A.O.; Shafiani, S.; Clemons, C.; Larson, R.P.; Dinh, C.; Higdon, L.E.; Cambier, C.; Sissons, J.R.; Gallegos, A.M.; Fink, P.J.; et al. ICOS and Bcl6-dependent pathways maintain a CD4 T cell population with memory-like properties during tuberculosis. J. Exp. Med. 2015, 212, 715–728. [Google Scholar] [CrossRef] [Green Version]
- Petrone, L.; Vanini, V.; Chiacchio, T.; Petruccioli, E.; Cuzzi, G.; Schininà, V.; Palmieri, F.; Ippolito, G.; Goletti, D. Evaluation of IP-10 in Quantiferon-Plus as biomarker for the diagnosis of latent tuberculosis infection. Tuberculosis 2018, 111, 147–153. [Google Scholar] [CrossRef]
- Olsson, A.-K.; Dimberg, A.; Kreuger, J.; Claesson-Welsh, L. VEGF receptor signalling—In control of vascular function. Nat. Rev. Mol. Cell Biol. 2006, 7, 359–371. [Google Scholar] [CrossRef]
- Yang, Q.; Cai, Y.; Zhao, W.; Wu, F.; Zhang, M.; Luo, K.; Zhang, Y.; Liu, H.; Zhou, B.; Kornfeld, H.; et al. IP-10 and MIG Are Compartmentalized at the Site of Disease during Pleural and Meningeal Tuberculosis and Are Decreased after Antituberculosis Treatment. Clin. Vaccine Immunol. 2014, 21, 1635–1644. [Google Scholar] [CrossRef] [Green Version]
- Won, E.-J.; Choi, J.-H.; Cho, Y.-N.; Jin, H.-M.; Kee, H.J.; Park, Y.-W.; Kwon, Y.-S.; Kee, S.-J. Biomarkers for discrimination between latent tuberculosis infection and active tuberculosis disease. J. Infect. 2017, 74, 281–293. [Google Scholar] [CrossRef]
- Cheknev, S.B.; Apresova, M.A.; Moryakova, N.A.; Efremova, I.E.; Mezdrokhina, A.S.; Piskovskaya, L.S.; Babajanz, A.A. Production of the Growth Factors GM-CSF, G-CSF, and VEGF by Human Peripheral Blood Cells Induced with Metal Complexes of Human Serumγ-Globulin Formed with Copper or Zinc Ions. Mediat. Inflamm. 2014, 2014, 518265. [Google Scholar] [CrossRef]
- Gray, J.; Reves, R.; Johnson, S.; Belknap, R. Identification of False-Positive QuantiFERON-TB Gold In-Tube Assays by Repeat Testing in HIV-Infected Patients at Low Risk for Tuberculosis. Clin. Infect. Dis. 2011, 54, e20–e23. [Google Scholar] [CrossRef] [Green Version]
- Zwerling, A.; van den Hof, S.; Scholten, J.; Cobelens, F.; Menzies, D.; Pai, M. Interferon-gamma release assays for tuberculosis screening of healthcare workers: A systematic review. Thorax 2011, 67, 62–70. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.-C.; Wu, V.-C.; Yang, F.-J.; Hsu, C.-L.; Pan, S.-C.; Wang, J.-Y.; Wang, J.-T.; Yu, C.-J.; Lee, L.-N. Dynamic changes in positive interferon-gamma release assay in a dialysis population: An observational cohort study. J. Infect. 2013, 67, 529–535. [Google Scholar] [CrossRef] [Green Version]
- Pai, M.; Elwood, K. Interferon-gamma release assays for screening of health care workers in low tuberculosis incidence settings: Dynamic patterns and interpretational challenges. Can. Respir. J. 2012, 19, 81–83. [Google Scholar] [CrossRef]
- Griveas, I.; Visvardis, G.; Fleva, A.; Papadopoulou, D.; Mitsopoulos, E.; Kyriklidou, P.; Manou, E.; Ginikopoulou, E.; Meimaridou, D.; Paulitou, A.; et al. Comparative analysis of immunophe-notypic abnormalities in cellular immunity of uremic patients undergoing either hemodialysis or continuous ambulatory per-itoneal dialysis. Ren. Fail. 2005, 27, 279–282. [Google Scholar] [CrossRef] [Green Version]
Hemodialyzed (HD) Patients (n = 75) | Healthy Control c (n = 48) | p-Value | |||
---|---|---|---|---|---|
LTBI a (n = 28) | Normal b (n = 47) | ||||
Sex (Male) | 18 (64.3%) | 16 (34%) | 21 (43.8%) | 0.038 * | |
Age | 62.00 ± 11.18 | 60.00 ± 12.46 | 24.00 ± 2.72 | <0.001 *** | |
<65 years old | 16 (57.1%) | 30 (63.8%) | 21 (100.0%) | 0.796 | |
65–74 years old | 7 (25%) | 11 (23.4%) | 0 (0.0%) | ||
≥75 years old | 5 (17.9%) | 6 (12.8%) | 0 (0.0%) | ||
Previous TB contact | 7 (25%) | 6 (12.8%) | 0 (0.0%) | 0.002 ** | |
Previous TB treatment | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
BCG vaccination or scar | 19 (67.9%) | 34 (72.3%) | 48 (100.0%) | <0.001 *** | |
Abnormal chest X-ray lesion | 3 (10.7%) | 0 (0.0%) | 0 (0.0%) | 0.005 ** | |
Underlying diseases | |||||
Diabetes mellitus | 17 (60.7%) | 20 (42.6%) | 0 (0.0%) | 0.100 | |
Ischemic heart disease | 9 (32.1%) | 6 (12.8%) | 0 (0.0%) | 0.043 * | |
BMI (kg/m2) | 0.026 * | ||||
<18.5 | 9 (32.1%) | 4 (8.5%) | - | ||
18.5–22.9 | 9 (32.1%) | 26 (55.3%) | - | ||
23.0–24.9 | 6 (21.4%) | 5 (10.6%) | - | ||
25.0–29.9 | 4 (14.3%) | 9 (19.1%) | - | ||
30.0–34.9 | 0 (0.0%) | 3 (6.4%) | - | ||
Low BMI (<18.5 kg/m2) | 9 (32.1%) | 4 (8.5%) | - | 0.012 * | |
Smoking | 1 (3.6%) | 5 (10.6%) | - | 0.040 * | |
QFT-GIT results | |||||
Positive | 28 (100.0%) | 0 (0.0%) | 0 (0.0%) | ||
Indeterminate | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | ||
Negative | 0 (0.0%) | 47 (100.0%) | 48 (100.0%) | ||
Previous QFT-GIT results within 6 months | |||||
Positive | 27 (96.4%) | 16 (34%) | - | <0.001 *** | |
Indeterminate | 0 (0.0%) | 0 (0.0%) | - | ||
Negative | 1 (3.6%) | 31 (66%) | - | ||
Reversion | 0 (0.0%) | 16 (37.2%) | - | ||
Conversion | 1 (2.9%) | 0 (0.0%) | |||
LTBI treatment history | 6 (22.2%) | 6 (37.5%) | - | 0.232 | |
QFT-GIT responses groups (IU/mL) | |||||
Negative | <0.2 | 0 (0.0%) | 46 (97.9%) | 46 (95.8%) | <0.001 *** |
Borderline | 0.2–0.34 | 0 (0.0%) | 1 (2.1%) | 2 (4.2%) | |
0.35–0.7 | 7 (25%) | 0 (0.0%) | 0 (0.0%) | ||
Positive | >0.7 | 21 (75.0%) | 0 (0.0%) | 0 (0.0%) | |
Previous QFT-GIT responses group within 6 months (IU/mL) | |||||
Negative | < 0.2 | 1 (3.6%) | 24 (51.1%) | - | <0.001 *** |
Borderline | 0.2–0.34 | 0 (0.0%) | 7 (14.9%) | - | |
0.3–0.7 | 1 (3.6%) | 6 (12.8%) | - | ||
Positive | > 0.7 | 26 (92.9%) | 10 (21.3%) | - | |
Plasma IFN-γ level after T cell mitogen stimulation (Mitogen-Nil, IU/mL) | 9.40 ± 1.68 | 9.24 ± 1.34 | 10.00 ± 0.00 | 0.005 ** (a = b < c) |
QFT-GIT Responses (IU/mL) | ||||||
---|---|---|---|---|---|---|
<0.2 | 0.20–0.34 | 0.35–0.70 | >0.7 | Total | ||
Previous QFT-GIT responses within six months (IU/mL) | <0.2 | 24 (96.0%) | 0 (0.0%) | 0 (0.0%) | 1 (4.0%) | 25 (100.0%) |
0.20–0.34 | 7 (100.0%) | 0 (0.0%) | 0 (0.0%) | 0 (0.0%) | 7 (100.0%) | |
0.35–0.7 | 6 (85.7%) | 0 (0.0%) | 1 (14.3%) | 0 (0.0%) | 7 (100.0%) | |
>0.7 | 9 (25.0%) | 1 (2.8%) | 6 (16.7%) | 20 (55.5%) | 36 (100.0%) | |
Total (n) | 46 | 1 | 7 | 21 | 75 | |
Cohen κ coefficient = 0.386, p < 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.Y.; Park, S.-B.; Park, H.; Kim, J.; Kim, Y.N.; Kim, S. Cytokine and Chemokine mRNA Expressions after Mycobacterium tuberculosis-Specific Antigen Stimulation in Whole Blood from Hemodialysis Patients with Latent Tuberculosis Infection. Diagnostics 2021, 11, 595. https://doi.org/10.3390/diagnostics11040595
Park JY, Park S-B, Park H, Kim J, Kim YN, Kim S. Cytokine and Chemokine mRNA Expressions after Mycobacterium tuberculosis-Specific Antigen Stimulation in Whole Blood from Hemodialysis Patients with Latent Tuberculosis Infection. Diagnostics. 2021; 11(4):595. https://doi.org/10.3390/diagnostics11040595
Chicago/Turabian StylePark, Ji Young, Sung-Bae Park, Heechul Park, Jungho Kim, Ye Na Kim, and Sunghyun Kim. 2021. "Cytokine and Chemokine mRNA Expressions after Mycobacterium tuberculosis-Specific Antigen Stimulation in Whole Blood from Hemodialysis Patients with Latent Tuberculosis Infection" Diagnostics 11, no. 4: 595. https://doi.org/10.3390/diagnostics11040595
APA StylePark, J. Y., Park, S. -B., Park, H., Kim, J., Kim, Y. N., & Kim, S. (2021). Cytokine and Chemokine mRNA Expressions after Mycobacterium tuberculosis-Specific Antigen Stimulation in Whole Blood from Hemodialysis Patients with Latent Tuberculosis Infection. Diagnostics, 11(4), 595. https://doi.org/10.3390/diagnostics11040595