Influence of Visual Information and Sex on Postural Control in Children Aged 6–12 Years Assessed with Accelerometric Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Sample
2.2. Procedure
2.3. Statistical Analysis
3. Results
3.1. Sample Characteristics
3.2. Accelerations Recorded
3.3. Correlation Analysis and Model of Logistic Regression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gibbs, J.; Appleton, J.; Appleton, R. Dyspraxia or developmental coordination disorder? Unravelling the enigma. Arch. Dis. Child. 2007, 92, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Nolan, L.; Grigorenko, A.; Thorstensson, A. Balance control: Sex and age differences in 9- to 16-year-olds. Dev. Med. Child Neurol. 2005, 47, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Steindl, R.; Kunz, K.; Schrott-Fischer, A.; Scholtz, A. Effect of age and sex on maturation of sensory systems and balance control. Dev. Med. Child Neurol. 2006, 48, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Assländer, L.; Peterka, R.J. Sensory reweighting dynamics in human postural control. J. Neurophysiol. 2014, 111, 1852–1864. [Google Scholar] [CrossRef] [Green Version]
- Van De Kolk, I.; Gerards, S.M.P.L.; Harms, L.S.E.; Kremers, S.P.J.; Gubbels, J.S. The Effects of a Comprehensive, Integrated Obesity Prevention Intervention Approach (SuperFIT) on Children’s Physical Activity, Sedentary Behavior, and BMI Z-Score. Int. J. Environ. Res. Public Heal. 2019, 16, 5016. [Google Scholar] [CrossRef] [Green Version]
- Rival, C.; Ceyte, H.; Olivier, I. Developmental changes of static standing balance in children. Neurosci. Lett. 2005, 376, 133–136. [Google Scholar] [CrossRef]
- Kirshenbaum, N.; Riach, C.; Starkes, J. Non-linear development of postural control and strategy use in young children: A longitudinal study. Exp. Brain Res. 2001, 140, 420–431. [Google Scholar] [CrossRef]
- Hatzitaki, V.; Zlsi, V.; Kollias, I.; Kioumourtzoglou, E. Perceptual-Motor Contributions to Static and Dynamic Balance Control in Children. J. Mot. Behav. 2002, 34, 161–170. [Google Scholar] [CrossRef]
- Perrin, P.; Perrin, C. Sensory afferences and motor control of equilibrium using static and dynamic posture tests. Ann. d’Otolaryngol. Chir. Cervico-Faciale 1996, 113, 133–146. [Google Scholar]
- Odenrick, P.; Sandstedt, P. Development of postural sway in the normal child. Hum. Neurobiol. 1984, 3, 241–244. [Google Scholar]
- Girolami, G.L.; Shiratori, T.; Aruin, A.S. Anticipatory postural adjustments in children with typical motor development. Exp. Brain Res. 2010, 205, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Sibley, K.M.; Beauchamp, M.K.; Van Ooteghem, K.; Paterson, M.; Wittmeier, K.D. Components of Standing Postural Control Evaluated in Pediatric Balance Measures: A Scoping Review. Arch. Phys. Med. Rehabil. 2017, 98, 2066–2078.e4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Soidán, J.L.; Leirós-Rodríguez, R.; Romo-Pérez, V.; García-Liñeira, J. Accelerometric Assessment of Postural Balance in Children: A Systematic Review. Diagn. 2020, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Horak, F.B. Postural orientation and equilibrium: What do we need to know about neural control of balance to prevent falls? Age Ageing 2006, 35, ii7–ii11. [Google Scholar] [CrossRef] [Green Version]
- Gaertner, C.; Bucci, M.P.; Obeid, R.; Wiener-Vacher, S. Subjective Visual Vertical and Postural Performance in Healthy Children. PLoS ONE 2013, 8, e79623. [Google Scholar] [CrossRef] [PubMed]
- Boonyong, S.; Siu, K.-C.; van Donkelaar, P.; Chou, L.-S.; Woollacott, M.H. Development of postural control during gait in typically developing children: The effects of dual-task conditions. Gait Posture 2012, 35, 428–434. [Google Scholar] [CrossRef] [Green Version]
- Busquets, A.; Aranda-Garcia, S.; Ferrer-Uris, B.; Marina, M.; Angulo-Barroso, R. Age and gymnastic experience effects on sensory reweighting processes during quiet stand. Gait Posture 2018, 63, 177–183. [Google Scholar] [CrossRef]
- Barela, J.A.; Jeka, J.J.; Clark, J.E. Postural control in children. Exp. Brain Res. 2003, 150, 434–442. [Google Scholar] [CrossRef]
- Peterson, M.L.; Christou, E.; Rosengren, K.S. Children achieve adult-like sensory integration during stance at 12-years-old. Gait Posture 2006, 23, 455–463. [Google Scholar] [CrossRef]
- Cuisinier, R.; Olivier, I.; Vaugoyeau, M.; Nougier, V.; Assaiante, C. Reweighting of Sensory Inputs to Control Quiet Standing in Children from 7 to 11 and in Adults. PLoS ONE 2011, 6, e19697. [Google Scholar] [CrossRef] [Green Version]
- McKay, S.M.; Wu, J.; Angulo-Barroso, R.M. Effect of Achilles tendon vibration on posture in children. Gait Posture 2014, 40, 32–37. [Google Scholar] [CrossRef]
- Villarrasa-Sapiña, I.; Álvarez-Pitti, J.; Cabeza-Ruiz, R.; Redón, P.; Lurbe, E.; García-Massó, X. Relationship between body composition and postural control in prepubertal overweight/obese children: A cross-sectional study. Clin. Biomech. 2018, 52, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Dinkel, D.; Snyder, K.; Molfese, V.; Kyvelidou, A. Postural control strategies differ in normal weight and overweight infants. Gait Posture 2017, 55, 167–171. [Google Scholar] [CrossRef]
- Rinaldi, N.M.; Polastri, P.F.; Barela, J.A. Age-related changes in postural control sensory reweighting. Neurosci. Lett. 2009, 467, 225–229. [Google Scholar] [CrossRef] [PubMed]
- García-Liñeira, J.; Leirós-Rodríguez, R.; Romo-Pérez, V.; García-Soidán, J.L. Validity and Reliability of a Tool for Accelerometric Assessment of Balance in Scholar Children. J. Clin. Med. 2021, 10, 137. [Google Scholar] [CrossRef] [PubMed]
- García-Liñeira, J.; García-Soidán, J.L.; Romo-Pérez, V.; Leirós-Rodríguez, R. Reliability of accelerometric assessment of balance in children aged 6–12 years. BMC Pediatr. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Verbecque, E.; Vereeck, L.; Hallemans, A. Postural sway in children: A literature review. Gait Posture 2016, 49, 402–410. [Google Scholar] [CrossRef]
- An, M.-H.; Yi, C.-H.; Jeon, H.-S.; Park, S.-Y. Age-related changes of single-limb standing balance in children with and without deafness. Int. J. Pediatr. Otorhinolaryngol. 2009, 73, 1539–1544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zipori, A.B.; Colpa, L.; Wong, A.M.F.; Cushing, S.L.; Gordon, K.A. Postural stability and visual impairment: Assessing balance in children with strabismus and amblyopia. PLoS ONE 2018, 13, e0205857. [Google Scholar] [CrossRef]
- Hirabayashi, S.-I.; Iwasaki, Y. Developmental perspective of sensory organization on postural control. Brain Dev. 1995, 17, 111–113. [Google Scholar] [CrossRef]
- Cumberworth, V.L.; Patel, N.N.; Rogers, W.; Kenyon, G.S. The maturation of balance in children. J. Laryngol. Otol. 2006, 121, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Leirós-Rodríguez, R.; García-Soidán, J.L.; Romo-Pérez, V. Analyzing the Use of Accelerometers as a Method of Early Diagnosis of Alterations in Balance in Elderly People: A Systematic Review. Sensors 2019, 19, 3883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shumway-Cook, A.; Woollacott, M.H. The Growth of Stability. J. Mot. Behav. 1985, 17, 131–147. [Google Scholar] [CrossRef] [PubMed]
- García-Soidán, J.L.; García-Liñeira, J.; Leirós-Rodríguez, R.; Soto-Rodríguez, A. Physical Activity Practice and Optimal Development of Postural Control in School Children: Are They Related? J. Clin. Med. 2020, 9, 2919. [Google Scholar] [CrossRef]
Age | All (N = 316) | |||
---|---|---|---|---|
N | Weight (kg) | Height (cm) | BMI (kg/m2) | |
6 | 36 | 23.7 ± 4.7 | 119.2 ± 5 | 16.5 ± 2.13 |
7 | 52 | 27.7 ± 6.4 | 123.6 ± 6.3 | 17.9 ± 2.7 |
8 | 40 | 31.2 ± 5.7 | 129.3 ± 4.6 | 18.6 ± 3 |
9 | 31 | 35.3 ± 9.1 | 135.4 ± 7.1 | 19 ± 3.6 |
10 | 68 | 37.7 ± 8 | 143.3 ± 6.3 | 18.3 ± 3.1 |
11 | 56 | 42.9 ± 11.1 | 148.9 ± 7.8 | 19.1 ± 3.6 |
12 | 33 | 50.1 ± 10.9 | 153.1 ± 7.3 | 21.3 ± 4 |
All | 316 | 35.6 ± 11.4 | 136.8 ± 5 | 18.6 ± 3.4 |
Boys (N = 158) | ||||
6 | 20 | 24.7 ± 5 | 119.4 ± 5.1 | 17.2 ± 2.5 * |
7 | 22 | 26.2 ± 4.9 | 123.2 ± 5 | 17 ± 2.5 |
8 | 21 | 32.3 ± 5.8 | 130.9 ± 3.7 * | 18.8 ± 3.3 |
9 | 18 | 34.3 ± 7.7 | 134.7 ± 6.3 | 18.8 ± 34.3 |
10 | 32 | 38.2 ± 7.4 | 143.1 ± 5.5 | 18.5 ± 3.1 |
11 | 28 | 42.1 ± 11.5 | 147.9 ± 6.5 | 19.1 ± 4.2 |
12 | 17 | 47.7 ± 11.1 | 151.7 ± 9.1 | 20.7 ± 4 |
All | 158 | 35.3 ± 10.8 | 136.5 ± 10.3 | 18.6 ± 3.4 |
Girls (N = 158) | ||||
6 | 16 | 22.4 ± 3.5 | 118.9 ± 5.1 | 15.7 ± 1.4 * |
7 | 30 | 28.9 ± 7.2 | 124 ± 7.1 | 18.5 ± 2.8 |
8 | 19 | 29.8 ± 5.4 | 127.5 ± 4.9 * | 18.4 ± 2.8 |
9 | 13 | 36.6 ± 10.7 | 136.4 ± 8.3 | 19.4 ± 4 |
10 | 36 | 37.2 ± 8.6 | 143.5 ± 6.9 | 18 ± 3.2 |
11 | 28 | 43.7 ± 10.9 | 150 ± 8.9 | 19.1 ± 2.8 |
12 | 16 | 52.7 ± 10.3 | 154.6 ± 4.5 | 21.8 ± 4.1 |
All | 158 | 35.9 ± 11.9 | 137.1 ± 10.3 | 18.6 ± 3.3 |
Age | Boys | Girls | ||
---|---|---|---|---|
Eyes Open | Eyes Closed | Eyes Open | Eyes Closed | |
Vertical Axis | ||||
6 | 11 ± 10.4 * a | 15.7 ± 13.9 a | 4.3 ± 4.1 * b | 8.6 ± 7.6 b |
7 | 6.7 ± 5 aa | 10.7 ± 7.1 aa | 7 ± 5.7 b | 11.1 ± 9.5 b |
8 | 4.2 ± 4.1 * aa | 7.2 ± 6.4 * aa | 2.5 ± 1.9 * bbb | 3.1 ± 3.7 * bbb |
9 | 3.4 ± 3.1 aa | 7.5 ± 7.4 aa | 1.6 ± 1.3 b | 3.5 ± 3.5 b |
10 | 8.3 ± 5.3 ** | 10.1 ± 8.5 ** | 2 ± 1.2 ** b | 3.6 ± 2.3 ** b |
11 | 2 ± 1.3 aa | 4.8 ± 4 aa | 1.8 ± 0.6 bb | 3.2 ± 2.6 bb |
12 | 1.4 ± 0.8 aa | 4.2 ± 4 aa | 0.3 ± 0.1 | 3.8 ± 1.8 |
All | 6.7 ± 4.9 *** aaa | 9.1 ± 8 *** aaa | 4.3 ± 2.1 *** bbb | 6.4 ± 4.9 *** bbb |
Mediolateral Axis | ||||
6 | 19.7 ± 13.9 aaa | 27.2 ± 13.6 aaa | 13.2 ± 7.6 bb | 22.1 ± 13.6 bb |
7 | 14.3 ± 9.2 * aaa | 21.5 ± 8.8 * aaa | 10.2 ± 8.2 * bbb | 15.6 ± 0.1 * bbb |
8 | 10.2 ± 8.4 * aaa | 15.5 ± 9.1 * aaa | 4.7 ± 3.7 * bbb | 10.1 ± 4.9 * bbb |
9 | 8.8 ± 6.7 * aaa | 16.3 ± 8.3 * aaa | 4.1 ± 3.9 * bb | 9.5 ± 8.7 * bb |
10 | 7.8 ± 6.4 ** aaa | 12.9 ± 10.1 ** aaa | 2.7 ± 2.5 ** bbb | 6.9 ± 6.1 ** bbb |
11 | 4.9 ± 3.2 * aaa | 10.2 ± 6.6 *** aaa | 2.8 ± 1.3 * bbb | 4.3 ± 4.1 *** bbb |
12 | 1.7 ± 1.7 aaa | 8.3 ± 7.1 aaa | 1.9 ± 0.3 bb | 5.6 ± 4 bb |
All | 9.6 ± 9.1 *** aaa | 15.7 ± 10.8 *** aaa | 6.2 ± 5.3 *** bbb | 10 ± 9.5 *** bbb |
Anteroposterior Axis | ||||
6 | 13.1 ± 7.6 aaa | 18 ± 9.3 aaa | 9.2 ± 7.8 bb | 13.4 ± 11.5 bb |
7 | 10 ± 6 aa | 13.1 ± 6.9 aa | 7.8 ± 6.1 bbb | 11.7 ± 6.1 bbb |
8 | 7.4 ± 5 * aa | 10.7 ± 7.2 * aa | 4.3 ± 4 * bb | 6.6 ± 4.9 * bb |
9 | 6.3 ± 6 * aaa | 9.6 ± 6.7 * aaa | 2.1 ± 1.8 * b | 5 ± 4.6 * b |
10 | 6.3 ± 5.8 * aaa | 7.8 ± 7.2 * aaa | 3 ± 2.9 * bb | 5.9 ± 4.1 * bb |
11 | 4.6 ± 3.4 * aaa | 6.5 ± 4.3 * aaa | 2.7 ± 1.4 * bbb | 3.8 ± 3.8 * bbb |
12 | 1.4 ± 1.1 aa | 4.8 ± 4.7 aa | 1.9 ± 0.6 bb | 4.5 ± 3 bb |
All | 6.6 ± 6.6 *** aaa | 9.9 ± 7.7 ** aaa | 5.2 ± 4.1 *** bbb | 6.9 ± 6.8 ** bbb |
Root Mean Square | ||||
6 | 26.8 ± 18.5 aaa | 37.4 ± 19.3 aaa | 27.6 ± 18.9 bb | 27.6 ± 18.9 bb |
7 | 19.1 ± 11.5 aaa | 28.2 ± 11.3 aaa | 14.7 ± 11.6 bbb | 22.6 ± 14.9 bbb |
8 | 13.6 ± 10.2 * aaa | 20.8 ± 12.2 * aaa | 6.9 ± 5.6 * bbb | 12.9 ± 7.1 * bbb |
9 | 11.7 ± 9.5 * aaa | 21 ± 11.9 * aaa | 5 ± 4.4 * bb | 11.5 ± 10.2 * bb |
10 | 12.5 ± 10.7 ** aaa | 17.6 ± 15.8 ** aaa | 4.5 ± 4 ** bbb | 9.1 ± 8.3 ** bbb |
11 | 6.7 ± 5.2 * aaa | 13.2 ± 8.6 ** aaa | 4.1 ± 1.5 * bbb | 6.5 ± 6.3 ** bbb |
12 | 2.5 ± 2.3 aaa | 10.8 ± 9 aaa | 2.3 ± 1 bb | 7.4 ± 6.2 bb |
All | 13.6 ± 12.2 *** aaa | 20.9 ± 15.2 *** aaa | 8.4 ± 7.8 *** bbb | 13.5 ± 13.1 *** bbb |
Age | Boys | Girls | ||
---|---|---|---|---|
Eyes Open | Eyes Closed | Eyes Open | Eyes Closed | |
Vertical Axis | ||||
6 | 64.1 ± 42.9 * | 72.2 ± 40.9 | 38.4 ± 26.3 * b | 53.2 ± 36.5 b |
7 | 55.5 ± 33.6 | 65.7 ± 30.3 | 41.4 ± 36.6 b | 54.4 ± 34.8 b |
8 | 36.5 ± 29.1 aa | 50.1 ± 29.2 aa | 20.1 ± 19.4 bb | 35.8 ± 21.6 bb |
9 | 31.4 ± 22.6 * aa | 48.4 ± 30.4 aa | 16.5 ± 14.8* b | 31.7 ± 22.2 b |
10 | 36.3 ± 40.4 ** aa | 50.9 ± 41.8 ** aa | 16 ± 14.3 ** bb | 28 ± 23.5 ** bbb |
11 | 16.9 ± 19.1 aa | 33.5 ± 23.9 aa | 9.9 ± 8.3 bbb | 22.3 ± 21.6 bbb |
12 | 10.7 ± 9.9 aa | 36.9 ± 31.9 * aa | 2.5 ± 2.4 bb | 18.5 ± 15.9 * bb |
All | 35.8 ± 35.3 *** aaa | 50.7 ± 35.3 *** aaa | 21.2 ± 19.9 *** bbb | 34.5 ± 29.4 *** bbb |
Mediolateral Axis | ||||
6 | 74.2 ± 33.7 aa | 88.7 ± 32.2 aa | 63.5 ± 26.1 bb | 82.3 ± 33 bb |
7 | 65.9 ± 28.2 aa | 82 ± 22.1 * aaa | 56.3 ± 29.8 | 65.4 ± 27.8* |
8 | 53 ± 32.2 * | 67 ± 29.4 | 34 ± 15.4 * bbb | 54.4 ± 20.8 bbb |
9 | 52.8 ± 21.5 ** aa | 68.7 ± 22 * aa | 30.9 ± 15.6 ** bbb | 50.1 ± 22.2 * bbb |
10 | 38.6 ± 29 * aaa | 62.3 ± 35.9 ** aaa | 24.4 ± 17.8 * bbb | 42.5 ± 22.5 ** bbb |
11 | 32.1 ± 22.1 ** aaa | 53.4 ± 18 *** aaa | 16.6 ± 13.8 ** bbb | 30.0 ± 19.3 *** bbb |
12 | 19.5 ± 18.2 aa | 46.7 ± 34.2 aa | 10.6 ± 11.5 bb | 31.9 ± 21 bb |
All | 47.2 ± 31.6 *** aaa | 66.5 ± 30.9 *** aaa | 33.3 ± 26.6 *** bbb | 49.6 ± 28.7 *** bbb |
Anteroposterior Axis | ||||
6 | 63.9 ± 22.5 aa | 82.7 ± 29.5 aa | 57 ± 28.6 b | 69.8 ± 30.4 b |
7 | 57.3 ± 23.1 | 64.2 ± 26 | 45.2 ± 20.5 bbb | 61.7 ± 20.4 bbb |
8 | 48.3 ± 28.3 | 57.1 ± 27.4 | 34.7 ± 23.4 b | 43.8 ± 17.9 b |
9 | 44.4 ± 22.5 ** | 48.2 ± 21.7 * | 22.5 ± 14.6 ** b | 31 ± 17.3* b |
10 | 34 ± 32.2 aa | 45.8 ± 29.7 aa | 28.4 ± 23.8 bb | 38.2 ± 24.9 bbb |
11 | 29.5 ± 29.4 * aa | 43.3 ± 18 aa | 17.4 ± 19.2 * bb | 32.4 ± 24.7 bb |
12 | 14.2 ± 13.1 a | 34.8 ± 31.5 a | 10.6 ± 8.3 bbb | 27.1 ± 20.5 bbb |
All | 41.1 ± 29.9 ** aaa | 53.2 ± 29.5 ** aaa | 30.8 ± 25.2 ** bbb | 43.8 ± 26.6 ** bbb |
Root Mean Square | ||||
6 | 120.1 ± 52.1 a | 138.1 ± 52.1 a | 95.7 ± 42 bbb | 123.8 ± 49.3 bbb |
7 | 107.0 ± 40.9 a | 126.7 ± 34 a | 87 ± 44.5 bb | 108.5 ± 40.6 bb |
8 | 83.2 ± 47.2 * a | 105 ± 40.8 * a | 54.8 ± 31.5 ** bb | 80.2 ± 30.5 * bb |
9 | 77.4 ± 34.9 ** aa | 99.1 ± 37.7 * aa | 43.5 ± 22.6 * bb | 68.4 ± 32.6 * bbb |
10 | 65.3 ± 56.6 * aaa | 95.2 ± 58.5 * aaa | 43.3 ± 32.2 * bbb | 65.4 ± 38.1 * bbb |
11 | 48.9 ± 38.8 * aa | 78.9 ± 28.7 ** aa | 27.7 ± 25.3 * bbb | 52.2 ± 34.1 ** bbb |
12 | 27.5 ± 24.5 aa | 70.9 ± 53.7 aa | 15.6 ± 14.4 bbb | 46.5 ± 32.2 bbb |
All | 74.8 ± 52.3 *** aaa | 102.1 ± 49.7 *** aaa | 52.6 ± 41.9 *** bbb | 77.3 ± 44.8 *** bbb |
ME | OR | SE | CI 95% | |
---|---|---|---|---|
Monopodal Balance with Eyes Open Test (g) | ||||
Age | −0.051 | 0.816 ** | 0.06 | 0.705–0.945 |
Average root mean square | −0.017 | 0.935 *** | 0.014 | 0.907–0.963 |
Constant | 12.077 *** | 9.403 | 2.626–55.546 | |
Age | −0.053 | 0.807 ** | 0.062 | 0.695–0.937 |
Maximum root mean square | −0.004 | 0.985 *** | 0.003 | 0.979–0.991 |
Constant | 18.066 *** | 15.113 | 3.506–93.095 | |
Monopodal Balance with Eyes Closed Test (g) | ||||
Age | −0.052 | 0.813 ** | 0.06 | 0.703–0.942 |
Average root mean square | −0.014 | 0.946 *** | 0.011 | 0.001–0.926 |
Constant | 16.435 *** | 13.073 | 3.457–78.14 | |
Age | −0.048 | 0.824 ** | 0.06 | 0.714–0.952 |
Maximum root mean square | −0.004 | 0.985 *** | 0.003 | 0.979–0.991 |
Constant | 22.555 *** | 19.217 | 4.246–119.806 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Liñeira, J.; Leirós-Rodríguez, R.; Chinchilla-Minguet, J.L.; García-Soidán, J.L. Influence of Visual Information and Sex on Postural Control in Children Aged 6–12 Years Assessed with Accelerometric Technology. Diagnostics 2021, 11, 637. https://doi.org/10.3390/diagnostics11040637
García-Liñeira J, Leirós-Rodríguez R, Chinchilla-Minguet JL, García-Soidán JL. Influence of Visual Information and Sex on Postural Control in Children Aged 6–12 Years Assessed with Accelerometric Technology. Diagnostics. 2021; 11(4):637. https://doi.org/10.3390/diagnostics11040637
Chicago/Turabian StyleGarcía-Liñeira, Jesús, Raquel Leirós-Rodríguez, José Luis Chinchilla-Minguet, and José Luis García-Soidán. 2021. "Influence of Visual Information and Sex on Postural Control in Children Aged 6–12 Years Assessed with Accelerometric Technology" Diagnostics 11, no. 4: 637. https://doi.org/10.3390/diagnostics11040637
APA StyleGarcía-Liñeira, J., Leirós-Rodríguez, R., Chinchilla-Minguet, J. L., & García-Soidán, J. L. (2021). Influence of Visual Information and Sex on Postural Control in Children Aged 6–12 Years Assessed with Accelerometric Technology. Diagnostics, 11(4), 637. https://doi.org/10.3390/diagnostics11040637