Gingival Crevicular Placental Alkaline Phosphatase Is an Early Pregnancy Biomarker for Pre-Eclampsia
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design and Participants
2.2. Definitions
2.3. Gingival Crevicular Fluid Sample Collection and Elution Protocol
2.4. Blood Samples
2.5. ELISA Assays
2.6. Sample Size Calculation
2.7. Statistical Analyses
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin Summary, Number 222. Obstet. Gynecol. 2020, 135, 1492–1495. [CrossRef]
- Payne, B.; Magee, L.A.; Von Dadelszen, P. Assessment, surveillance and prognosis in pre-eclampsia. Best Pr. Res. Clin. Obstet. Gynaecol. 2011, 25, 449–462. [Google Scholar] [CrossRef]
- Visintin, C.; Mugglestone, M.A.; Almerie, M.Q.; Nherera, L.M.; James, D.; Walkinshaw, S.; on behalf of the Guideline Development Group. Management of hypertensive disorders during pregnancy: Summary of NICE guidance. BMJ 2010, 341, c2207. [Google Scholar] [CrossRef] [Green Version]
- Magee, L.A.; Pels, A.; Helewa, M.; Rey, E.; von Dadelszen, P.; Audibert, F.; Bujold, E.; Côté, A.-M.; Douglas, M.J.; Eastabrook, G.; et al. Diagnosis, Evaluation, and Management of the Hypertensive Disorders of Pregnancy: Executive Summary. J. Obstet. Gynaecol. Can. 2014, 36, 416–438. [Google Scholar] [CrossRef]
- Mol, B.W.J.; Roberts, C.T.; Thangaratinam, S.; Magee, L.A.; de Groot, C.J.M.; Hofmeyr, G.J. Pre-eclampsia. Lancet 2016, 387, 999–1011. [Google Scholar] [CrossRef]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef]
- Say, L.; Chou, D.; Gemmill, A.; Tunçalp, Ö.; Moller, A.-B.; Daniels, J.; Gülmezoglu, A.M.; Temmerman, M.; Alkema, L. Global causes of maternal death: A WHO systematic analysis. Lancet Glob. Health 2014, 2, e323–e333. [Google Scholar] [CrossRef] [Green Version]
- Wadhwani, P.; Saha, P.K.; Kalra, J.K.; Gainder, S.; Sundaram, V. A study to compare maternal and perinatal outcome in early vs. late onset preeclampsia. Obstet. Gynecol. Sci. 2020, 63, 270–277. [Google Scholar] [CrossRef]
- Feinberg, R.F.; Kliman, H.J.; Cohen, A.W. Preeclampsia, trisomy 13, and the placental bed. Obstet. Gynecol. 1991, 78, 505–508. [Google Scholar]
- Bakrania, B.A.; Spradley, F.T.; Drummond, H.A.; Lamarca, B.; Ryan, M.J.; Granger, J.P. Preeclampsia: Linking Placental Ischemia with Maternal Endothelial and Vascular Dysfunction. Compr. Physiol. 2020, 11, 1315–1349. [Google Scholar]
- Staff, A.C.; Fjeldstad, H.E.; Fosheim, I.K.; Moe, K.; Turowski, G.; Johnsen, G.M.; Alnaes-Katjavivi, P.; Sugulle, M. Failure of physiological transformation and spiral artery atherosis: Their roles in preeclampsia. Am. J. Obstet. Gynecol. 2020, in press. [Google Scholar] [CrossRef] [PubMed]
- Lisonkova, S.; Sabr, Y.; Mayer, C.; Young, C.; Skoll, A.; Joseph, K. Maternal Morbidity Associated With Early-Onset and Late-Onset Preeclampsia. Obstet. Gynecol. 2014, 124, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Hauth, J.C.; Ewell, M.G.; Levine, R.J.; Esterlitz, J.R.; Sibai, B.; Curet, L.B.; Catalano, P.M.; Morris, C.D. Pregnancy Outcomes in Healthy Nulliparas Who Developed Hypertension. Obstet. Gynecol. 2000, 95, 24–28. [Google Scholar]
- Sibai, B.M. Diagnosis and management of gestational hypertension and preeclampsia. Obstet. Gynecol. 2003, 102, 181–192. [Google Scholar]
- Zhang, J.; Meikle, S.; Trumble, A. Severe Maternal Morbidity Associated with Hypertensive Disorders in Pregnancy in the United States. Hypertens. Pregnancy 2003, 22, 203–212. [Google Scholar] [CrossRef]
- van Esch, J.J.A.; van Heijst, A.F.; de Haan, A.F.J.; van der Heijden, O.W.H. Early-onset preeclampsia is associated with perinatal mortality and severe neonatal morbidity. J. Matern. Fetal Neonatal Med. 2017, 30, 2789–2794. [Google Scholar] [CrossRef] [Green Version]
- Veerbeek, J.H.; Hermes, W.; Breimer, A.Y.; Van Rijn, B.B.; Koenen, S.V.; Mol, B.W.; Franx, A.; De Groot, C.J.; Koster, M.P. Cardiovascular Disease Risk Factors After Early-Onset Preeclampsia, Late-Onset Preeclampsia, and Pregnancy-Induced Hypertension. Hypertension 2015, 65, 600–606. [Google Scholar] [CrossRef] [Green Version]
- Brown, M.A.; Roberts, L.; Hoffman, A.; Henry, A.; Mangos, G.; O’Sullivan, A.; Pettit, F.; Youssef, G.; Xu, L.; Davis, G.K. Recognizing Cardiovascular Risk After Preeclampsia: The P4 Study. J. Am. Heart Assoc. 2020, 9, e018604. [Google Scholar] [CrossRef]
- Burton, G.J.; Redman, C.W.; Roberts, J.M.; Moffett, A. Pre-eclampsia: Pathophysiology and clinical implications. BMJ 2019, 366, l2381. [Google Scholar] [CrossRef] [Green Version]
- Steegers, E.A.; von Dadelszen, P.; Duvekot, J.J.; Pijnenborg, R. Pre-eclampsia. Lancet 2010, 376, 631–644. [Google Scholar] [CrossRef]
- Brosens, I.; Puttemans, P.; Benagiano, G. Placental bed research: I. The placental bed: From spiral arteries remodeling to the great obstetrical syndromes. Am. J. Obstet. Gynecol. 2019, 221, 437–456. [Google Scholar] [CrossRef]
- Redman, C.W.; Staff, A.C.; Roberts, J.M. Syncytiotrophoblast stress in preeclampsia: The convergence point for multiple pathways. Am. J. Obstet. Gynecol. 2021, in press. [Google Scholar] [CrossRef]
- Sibai, B.; Dekker, G.; Kupferminc, M. Pre-eclampsia. Lancet 2005, 365, 785–799. [Google Scholar] [CrossRef]
- Brown, D. Preeclampsia, hypertension, and a possible treatment for preeclampsia. Med. Hypotheses 2020, 140, 109669. [Google Scholar] [CrossRef]
- Henderson, J.T.; Thompson, J.H.; Burda, B.U.; Cantor, A.; Beil, T.; Whitlock, E.P. Screening for Preeclampsia: A Systematic Evidence Review for the U.S. Preventive Services Task Force; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2017.
- Dekker, G.A. Management of preeclampsia. Pregnancy Hypertens. 2014, 4, 246–247. [Google Scholar] [CrossRef]
- Zwertbroek, E.F.; Groen, H.; Fontanella, F.; Maggio, L.; Marchi, L.; Bilardo, C.M. Performance of the FMF First-Trimester Preeclampsia-Screening Algorithm in a High-Risk Population in The Netherlands. Fetal Diagn. Ther. 2021, 48, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Krantz, D.A.; Hallahan, T.W. Incorporating the probability of competing event(s) into the preeclampsia competing risk algorithm. Am. J. Obstet. Gynecol. 2019, 221, 533–534. [Google Scholar] [CrossRef] [Green Version]
- Mone, F.; McAuliffe, F.M.; Malone, F.D. Application of a preeclampsia screening algorithm in a low-risk nulliparous population. Am. J. Obstet. Gynecol. 2018, 219, 506. [Google Scholar] [CrossRef] [Green Version]
- Gabbay-Benziv, R.; Oliveira, N.; Baschat, A.A. Optimal first trimester preeclampsia prediction: A comparison of multimarker algorithm, risk profiles and their sequential application. Prenat. Diagn. 2015, 36, 34–39. [Google Scholar] [CrossRef] [Green Version]
- Pedrosa, A.C.; Matias, A. Screening for pre-eclampsia: A systematic review of tests combining uterine artery Doppler with other markers. J. Perinat. Med. 2011, 39, 619–635. [Google Scholar] [CrossRef] [Green Version]
- O’Gorman, N.; Wright, D.; Syngelaki, A.; Akolekar, R.; Wright, A.; Poon, L.C.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 11–13 weeks gestation. Am. J. Obstet. Gynecol. 2016, 214, 103.e1–103.e12. [Google Scholar] [CrossRef] [Green Version]
- Gallo, D.M.; Wright, D.; Casanova, C.; Campanero, M.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 19–24 weeks’ gestation. Am. J. Obstet. Gynecol. 2016, 214, 619.e1–619.e17. [Google Scholar] [CrossRef] [Green Version]
- Tsiakkas, A.; Saiid, Y.; Wright, A.; Wright, D.; Nicolaides, K.H. Competing risks model in screening for preeclampsia by maternal factors and biomarkers at 30–34 weeks’ gestation. Am. J. Obstet. Gynecol. 2016, 215, 87.e1–87.e17. [Google Scholar] [CrossRef] [Green Version]
- Poon, L.C.; Rolnik, D.L.; Tan, M.Y.; Delgado, J.L.; Tsokaki, T.; Akolekar, R.; Singh, M.; Andrade, W.; Efeturk, T.; Jani, J.C.; et al. ASPRE trial: Incidence of preterm pre-eclampsia in patients fulfilling ACOG and NICE criteria according to risk by FMF algorithm. Ultrasound Obstet. Gynecol. 2018, 51, 738–742. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, A.; Gaedechens, D.; Ramírez, V.; Zuñiga, E.; Kusanovic, J.P.; Inostroza, C.; Varas-Godoy, M.; Silva, K.; Salomon, C.; Rice, G.; et al. Placental biomarkers and angiogenic factors in oral fluids of patients with preeclampsia. Prenat. Diagn. 2016, 36, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, A.; Realini, O.; Hernández, M.; Albers, D.; Weber, L.; Ramírez, V.; Param, F.; Kusanovic, J.P.; Sorsa, T.; Rice, G.E.; et al. Early pregnancy levels of gingival crevicular fluid matrix metalloproteinases-8 and -9 are associated with the severity of periodontitis and the development of gestational diabetes mellitus. J. Periodontol. 2021, 92, 205–215. [Google Scholar] [CrossRef]
- Chaparro, A.; Zuniga, E.; Varas-Godoy, M.; Albers, D.; Ramirez, V.; Hernández, M.; Kusanovic, J.P.; Acuña-Gallardo, S.; Rice, G.; Illanes, S.E. Periodontitis and placental growth factor in oral fluids are early pregnancy predictors of gestational diabetes mellitus. J. Periodontol. 2018, 89, 1052–1060. [Google Scholar] [CrossRef]
- Meyer, R.E.; Thompson, S.J.; Addy, C.L.; Garrison, C.Z.; Best, R.G. Maternal serum placental alkaline phosphatase level and risk for preterm delivery. Am. J. Obstet. Gynecol. 1995, 173, 181–186. [Google Scholar] [CrossRef]
- Ferianec, V.; Linhartová, L. Extreme elevation of placental alkaline phosphatase as a marker of preterm delivery, placental insufficiency and low birth weight. Neuro Endocrinol. Lett. 2011, 32, 154–157. [Google Scholar]
- Hunter, R.J.; Pinkerton, J.H.; Johnston, H. Serum placental alkaline phosphatase in normal pregnancy and preeclampsia. Obstet. Gynecol. 1970, 36, 536–546. [Google Scholar]
- Rajagambeeram, R.; Abu Raghavan, S.; Ghosh, S.; Basu, S.; Ramasamy, R.; Murugaiyan, S.B. Diagnostic Utility of Heat Stable Alkaline Phosphatase in Hypertensive Disorders of Pregnancy. J. Clin. Diagn. Res. 2014, 8, CC10–CC13. [Google Scholar] [CrossRef] [PubMed]
- Lowe, M.E. Site-specific mutations in the COOH-terminus of placental alkaline phosphatase: A single amino acid change converts a phosphatidylinositol-glycan-anchored protein to a secreted protein. J. Cell Biol. 1992, 116, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Bashiri, A.; Katz, O.; Maor, E.; Sheiner, E.; Pack, I.; Mazor, M. Positive placental staining for alkaline phosphatase corresponding with extreme elevation of serum alkaline phosphatase during pregnancy. Arch. Gynecol. Obstet. 2006, 275, 211–214. [Google Scholar] [CrossRef]
- Adam, S.; Elfeky, O.; Kinhal, V.; Dutta, S.; Lai, A.; Jayabalan, N.; Nuzhat, Z.; Palma, C.; Rice, G.E.; Salomon, C. Review: Fetal-maternal communication via extracellular vesicles—Implications for complications of pregnancies. Placenta 2017, 54, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Caton, J.G.; Armitage, G.; Berglundh, T.; Chapple, I.L.C.; Jepsen, S.; Kornman, K.S.; Mealey, B.L.; Papapanou, P.N.; Sanz, M.; Tonetti, M.S. A new classification scheme for periodontal and peri-implant diseases and conditions–Introduction and key changes from the 1999 classification. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S1–S8. [Google Scholar] [CrossRef]
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89 (Suppl. 1), S173–S182. [Google Scholar] [CrossRef] [Green Version]
- Chapple, I.L.C.; Mealey, B.L.; van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M.; et al. Periodontal health and gingival diseases and conditions on an intact and a reduced periodontium: Consensus report of workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Clin. Periodontol. 2018, 45 (Suppl. 20), S68–S77. [Google Scholar] [CrossRef]
- Sarker, S.; Scholz-Romero, K.; Perez, A.; Illanes, S.E.; Mitchell, M.D.; Rice, G.E.; Salomon, C. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J. Transl. Med. 2014, 12, 204. [Google Scholar] [CrossRef] [Green Version]
- Pillay, P.; Maharaj, N.; Moodley, J.; Mackraj, I. Placental exosomes and pre-eclampsia: Maternal circulating levels in normal pregnancies and, early and late onset pre-eclamptic pregnancies. Placenta 2016, 46, 18–25. [Google Scholar] [CrossRef]
- Salomon, C.; Rice, G.E. Role of Exosomes in Placental Homeostasis and Pregnancy Disorders. Prog. Mol. Biol. Transl. Sci. 2017, 145, 163–179. [Google Scholar]
- Shomer, E.; Katzenell, S.; Zipori, Y.; Sammour, R.N.; Isermann, B.; Brenner, B.; Aharon, A. Microvesicles of Women With Gestational Hypertension and Preeclampsia Affect Human Trophoblast Fate and Endothelial Function. Hypertension 2013, 62, 893–898. [Google Scholar] [CrossRef] [Green Version]
- Tannetta, D.; Masliukaite, I.; Vatish, M.; Redman, C.; Sargent, I. Update of syncytiotrophoblast derived extracellular vesicles in normal pregnancy and preeclampsia. J. Reprod. Immunol. 2017, 119, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Wright, D.; Wright, A.; Nicolaides, K.H. The competing risk approach for prediction of preeclampsia. Am. J. Obstet. Gynecol. 2020, 223, 12–23.e7. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Berg, C.V.D.; Alfirevic, Z.; O’Brien, S.; Röthlisberger, M.; Baker, P.N.; Kenny, L.C.; Kublickiene, K.; Duvekot, J.J. Early Pregnancy Biomarkers in Pre-Eclampsia: A Systematic Review and Meta-Analysis. Int. J. Mol. Sci. 2015, 16, 23035–23056. [Google Scholar] [CrossRef] [Green Version]
- Kunnen, A.; Blaauw, J.; van Doormaal, J.J.; van Pampus, M.G.; van der Schans, C.P.; Aarnoudse, J.G.; van Winkelhoff, A.J.; Abbas, F. Women with a recent history of early-onset pre-eclampsia have a worse periodontal condition. J. Clin. Periodontol. 2007, 34, 202–207. [Google Scholar] [CrossRef]
- Conde-Agudelo, A.; Villar, J.; Lindheimer, M. Maternal infection and risk of preeclampsia: Systematic review and metaanalysis. Am. J. Obstet. Gynecol. 2008, 198, 7–22. [Google Scholar] [CrossRef]
- Siqueira, F.M.; Cota, L.O.M.; Costa, J.E.; Haddad, J.P.A.; Lana, Â.M.Q.; Costa, F.O. Maternal Periodontitis as a Potential Risk Variable for Preeclampsia: A Case-Control Study. J. Periodontol. 2008, 79, 207–215. [Google Scholar] [CrossRef]
- Da Silva, G.M.; Coutinho, S.B.; Piscoya, M.D.B.V.; Ximenes, R.A.A.; Jamelli, S.R. Periodontitis as a Risk Factor for Preeclampsia. J. Periodontol. 2012, 83, 1388–1396. [Google Scholar] [CrossRef]
- Contreras, A.; Herrera, J.; Soto, J.; Arce, R.M.; Jaramillo, A.; Botero, J. Periodontitis Is Associated With Preeclampsia in Pregnant Women. J. Periodontol. 2006, 77, 182–188. [Google Scholar] [CrossRef] [Green Version]
- Daalderop, L.; Wieland, B.; Tomsin, K.; Reyes, L.; Kramer, B.; Vanterpool, S.; Been, J. Periodontal Disease and Pregnancy Outcomes: Overview of Systematic Reviews. JDR Clin. Transl. Res. 2017, 3, 10–27. [Google Scholar] [CrossRef]
- Figuero, E.; Han, Y.W.; Furuichi, Y. Periodontal diseases and adverse pregnancy outcomes: Mechanisms. Periodontology 2020, 83, 175–188. [Google Scholar] [CrossRef]
- Bobetsis, Y.A.; Graziani, F.; Gürsoy, M.; Madianos, P.N. Periodontal disease and adverse pregnancy outcomes. Periodontology 2020, 83, 154–174. [Google Scholar] [CrossRef]
Variable | No Pre-Eclampsia | Pre-Eclampsia |
---|---|---|
(n = 394) | (n = 18) | |
Age (years) | 26 (8) 18–41 | 26 (9) 19–38 |
Weight (kg) | 68 (17) 40–128 | 68 (25) 36–112 |
Height (mts) | 158 (7) 129–175 | 159 (8) 147–170 |
Body mass index (kg/m2) | 27 (7.1) 16.9–49 | 28 (8.0) 15.4–39.2 |
Systolic blood pressure (mmHg) | 104 (10) 80–142 | 112 (6) 100–124 |
Diastolic blood pressure (mmHg) | 62 (8) 40–92 | 67 (6) 52–80 |
Mean arterial pressure (mmHg) | 84 (12) 60–113 | 87.5 (12) 78–101 |
Maternal active smoking (%) | 72 (18.3) | 5 (27.8) |
First-trimester glycaemia (mg/dL) | 86 (8) 66–216 | 89 (11) 79–95 |
Fasting glycaemia (mg/dL) (second trimester) | 83 (3) 60–141 | 90 (13) 75–93 |
Oral glucose tolerance test (second trimester) | 103 (8) 65–201 | 113 (46) 69–153 |
Plaque index (PI) (%) | 67 (51) 0–100 | 77 (37) 14–100 |
Bleeding on probing (BOP) (%) | 56 (43) 2–100 | 58 (38) 2–100 |
Periodontal probing depth (PPD) (mm) | 2.6 (0.6) 1.4–4.4 | 2.6 (0.7) 1.5–4 |
Clinical attachment level (CAL) (mm) | 1.9 (0.7) 0.9–5.3 | 2 (0.7) 1.3–4.2 |
Periodontal probing depth pockets ≥ 3 mm (%) | 12.2 (18.3) 0–70.8 | 10.2 (18.8) 0–55.9 |
Periodontal inflamed surface area (mm2) | 777.6 (769.8) 10.7–2604 | 791.6 (589.7) 11.7–2515 |
Primary multiple logistic regression model | |||||
Pre-eclampsia | Odds ratio | Standard error | p-value | 95% CI | |
GCF-PLAP concentration: | 1.008 | 0.0038 | 0.034 | (1.000–1.015) | |
Systolic blood pressure: | 1.066 | 0.023 | 0.004 | (1.020–1.11) | |
Bootstrap estimation of the multiple logistic regression model | |||||
Coefficients | Mean | Standard error | 95% CI Bootstrap | ||
Intercept | −10.784 | 1.617 | (−13.956–−7.613) | ||
GCF-PLAP (pg/mL) | 0.008 | 0.003 | (0.000–0.015) | ||
Systolic blood pressure | 0.065 | 0.014 | (0.037–0.094) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaparro, A.; Monckeberg, M.; Realini, O.; Hernández, M.; Param, F.; Albers, D.; Ramírez, V.; Kusanovic, J.P.; Romero, R.; Rice, G.; et al. Gingival Crevicular Placental Alkaline Phosphatase Is an Early Pregnancy Biomarker for Pre-Eclampsia. Diagnostics 2021, 11, 661. https://doi.org/10.3390/diagnostics11040661
Chaparro A, Monckeberg M, Realini O, Hernández M, Param F, Albers D, Ramírez V, Kusanovic JP, Romero R, Rice G, et al. Gingival Crevicular Placental Alkaline Phosphatase Is an Early Pregnancy Biomarker for Pre-Eclampsia. Diagnostics. 2021; 11(4):661. https://doi.org/10.3390/diagnostics11040661
Chicago/Turabian StyleChaparro, Alejandra, Maximiliano Monckeberg, Ornella Realini, Marcela Hernández, Fernanda Param, Daniela Albers, Valeria Ramírez, Juan Pedro Kusanovic, Roberto Romero, Gregory Rice, and et al. 2021. "Gingival Crevicular Placental Alkaline Phosphatase Is an Early Pregnancy Biomarker for Pre-Eclampsia" Diagnostics 11, no. 4: 661. https://doi.org/10.3390/diagnostics11040661
APA StyleChaparro, A., Monckeberg, M., Realini, O., Hernández, M., Param, F., Albers, D., Ramírez, V., Kusanovic, J. P., Romero, R., Rice, G., & Illanes, S. E. (2021). Gingival Crevicular Placental Alkaline Phosphatase Is an Early Pregnancy Biomarker for Pre-Eclampsia. Diagnostics, 11(4), 661. https://doi.org/10.3390/diagnostics11040661