Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. CNUH Dataset and Challenges
2.2. Proposed Method
2.2.1. Overview
2.2.2. Global and Patch-Based Models
2.2.3. Model Architecture Details
2.3. Experiments Setup
3. Results
3.1. Experiments on Tumor Segmentation
3.2. Experiments on Tumor Classification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Related Works
Appendix A.1. Tumor Detection
Appendix A.2. Knee Bone Tumor Detection
Appendix B. Implementation Details
Appendix B.1. Multi-Level Distance Features
Appendix B.2. Loss Function
Appendix B.3. Fusion of Global and Patch-Based Models
Appendix C. Environment Setup and Evaluation Metrics
References
- Erickson, B.J.; Korfiatis, P.; Kline, T.L.; Akkus, Z.; Philbrick, K.; Weston, A.D. Deep Learning in Radiology: Does One Size Fit All? J. Am. Coll. Radiol. 2018, 15, 521–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chartrand, G.; Cheng, P.M.; Vorontsov, E.; Drozdzal, M.; Turcotte, S.; Pal, C.J.; Kadoury, S.; Tang, A. Deep Learning: A Primer for Radiologists. RadioGraphics 2017, 37, 2113–2131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ueda, D.; Shimazaki, A.; Miki, Y. Technical and clinical overview of deep learning in radiology. Jpn. J. Radiol. 2019, 37, 15–33. [Google Scholar] [CrossRef] [PubMed]
- Vartevan, A.; May, C.; Barnes, C.E. Pediatric bone imaging: Differentiating benign lesions from malignant. Appl. Radiol. 2018, 47, 8–15. [Google Scholar]
- Reicher, J.J.; Healthcare, S.; Do, B.H.; Nguyen, M.; Beaulieu, C.F. Single-input Bone Tumor Diagnosis Based on Convolutional Neural Network Classification of Bone Tumor Matrix. In Proceedings of the SIIM Annual Meeting, National Harbor, MD, USA, 31 May–2 June 2018. [Google Scholar]
- Al-antari, M.A.; Al-masni, M.A.; Choi, M.T.; Han, S.M.; Kim, T.S. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Int. J. Med. Inform. 2018, 117, 44–54. [Google Scholar] [CrossRef] [PubMed]
- Do, N.T.; Joo, S.D.; Yang, H.J.; Jung, S.T.; Kim, S.H. Knee Bone Tumor Segmentation from radiographs using Seg-Unet with Dice Loss. In Proceedings of the 25th International Workshop on Frontiers of Computer Vision (IW-FCV), Gangneung, Korea, 20 February 2019. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2015; Volume 9351, pp. 234–241. [Google Scholar] [CrossRef] [Green Version]
- Badrinarayanan, V.; Kendall, A.; Cipolla, R. SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 2017, 39, 2481–2495. [Google Scholar] [CrossRef] [PubMed]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Schaul, T.; Zhang, S.; LeCun, Y. No more pesky learning rates. In Proceedings of the International Conference on Machine Learning, Scottsdale, AZ, USA, 2 May 2013; pp. 343–351. [Google Scholar]
- Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; Chen, L.C. MobileNetV2: Inverted Residuals and Linear Bottlenecks. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 4510–4520. [Google Scholar] [CrossRef] [Green Version]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015. [Google Scholar]
- Ho, N.H.H.; Yang, H.J.J.; Kim, S.H.H.; Jung, S.T.; Joo, S.D.D. Regenerative semi-supervised bidirectional w-network-based knee bone tumor classification on radiographs guided by three-region bone segmentation. IEEE Access 2019, 7, 154277–154289. [Google Scholar] [CrossRef]
- Do, N.T.; Nguyen-Quynh, T.T.; Vo, T.H.; Jung, S.T.; Kim, S.H. End-to-End Knee Bone Tumor Segmentation and Classification from Radiographs using Seg-Unet and Dice Loss. In Proceedings of the Korea Computer Congress (KCC); The Korean Institute of Information Scientists and Engineers: Seoul, Korea, 2019; pp. 799–801. [Google Scholar]
- Do, N.T.; Jung, S.T.; Yang, H.J.; Kim, S.H. End-to-end Bone Tumor Segmentation and Classification from X-ray Images by Using Multi-level Seg-Unet Model. J. Inf. Sci. Soc. 2020, 47, 170–179. [Google Scholar] [CrossRef]
- Do, B.H.; Langlotz, C.; Beaulieu, C.F. Bone Tumor Diagnosis Using a Naïve Bayesian Model of Demographic and Radiographic Features. J. Digit. Imaging 2017, 30, 640–647. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.L.; Turner, S.P. Bone cancer: Diagnosis and treatment principles. Am. Fam. Physician 2018, 98, 205–213. [Google Scholar] [PubMed]
- Ramme, A.J.; Devries, N.; Kallemyn, N.A.; Magnotta, V.A.; Grosland, N.M. Semi-automated phalanx bone segmentation using the expectation maximization algorithm. J. Digit. Imaging 2009, 22, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.W.; Heng, P.A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; Thrun, S. Dermatologist-level classification of skin cancer with deep neural networks. Nature 2017, 542, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Milletari, F.; Navab, N.; Ahmadi, S.A. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. In Proceedings of the 2016 4th International Conference on 3D Vision, 3DV 2016, Stanford, CA, USA, 25–28 October 2016; pp. 565–571. [Google Scholar] [CrossRef] [Green Version]
- Sharma, N.; Ray, A.K. Computer aided segmentation of medical images based on hybridized approach of edge and region based techniques. In Proceedings of the International Conference on Mathematical Biology’, Mathematical Biology Recent Trends by Anamaya Publishers, Oberwolfach, Germany, 14–20 May 2006; pp. 150–155. [Google Scholar]
- Abdel-Maksoud, E.; Elmogy, M.; Al-Awadi, R. Brain tumor segmentation based on a hybrid clustering technique. Egypt. Inform. J. 2015, 16, 71–81. [Google Scholar] [CrossRef]
- Tiulpin, A.; Thevenot, J.; Rahtu, E.; Lehenkari, P.; Saarakkala, S. Automatic knee osteoarthritis diagnosis from plain radiographs: A deep learning-based approach. Sci. Rep. 2018, 8, 1727. [Google Scholar] [CrossRef] [PubMed]
- Górriz, M.; Antony, J.; McGuinness, K.; Giró-i Nieto, X.; O’Connor, N.E. Assessing knee OA severity with CNN attention-based end-to-end architectures. In Proceedings of the International Conference on Medical Imaging with Deep Learning, PMLR, London, UK, 8–10 July 2019. [Google Scholar]
- Khalid, H.; Hussain, M.; Al Ghamdi, M.A.; Khalid, T.; Khalid, K.; Khan, M.A.; Fatima, K.; Masood, K.; Almotiri, S.H.; Farooq, M.S.; et al. A comparative systematic literature review on knee bone reports from mri, x-rays and ct scans using deep learning and machine learning methodologies. Diagnostics 2020, 10, 518. [Google Scholar] [CrossRef] [PubMed]
- Kasten, Y.; Doktofsky, D.; Kovler, I. End-To-End Convolutional Neural Network for 3D Reconstruction of Knee Bones from Bi-planar X-ray Images. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2020; Volume 12450, pp. 123–133. [Google Scholar] [CrossRef]
- George, K.; Sankaran, P.; Joseph, P.K.; Ramachandran, K.; Rainachandran, K. Extraction of subtle radiographic image features of bone tumor: A case study. In Proceedings of the IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), Kollam, India, 8–10 August 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.S.; Cardoso, M.J.; Jorge Cardoso, M.; Cardoso, M.J.; Jorge Cardoso, M. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Cham, Switzerland, 2017; Volume 10553, pp. 240–248. [Google Scholar] [CrossRef] [Green Version]
Knee Region | Benign Tumor | Malignant Tumor | Normal |
---|---|---|---|
Distal femur | 598 | 89 | - |
Proximal tibia | 463 | 45 | - |
Total | 1061 | 134 | 381 |
No. | Model | Classification | Segmentation | Multi-Level Distance | Patch | Global |
---|---|---|---|---|---|---|
1 | Seg-Unet | 🗸 | ||||
2 | Seg-Unet + ClasSeg | 🗸 | 🗸 | |||
3 | Seg-Unet + ClasSegDis Patch | 🗸 | 🗸 | 🗸 | 🗸 | |
4 | Seg-Unet + ClasSegDis Global | 🗸 | 🗸 | 🗸 | 🗸 | |
5 | Seg-Unet + ClasSegDis Patch + Global | 🗸 | 🗸 | 🗸 | 🗸 | 🗸 |
No | Model | MeanIoU |
---|---|---|
1 | Seg-Unet | 69.50% |
2 | Seg-Unet + ClasSeg | 77.28% |
3 | Seg-Unet + ClasSegDis Patch | 66.53% |
4 | Seg-Unet + ClasSegDis Global | 78.89% |
5 | Seg-Unet + ClasSegDis Patch + Global | 84.84% |
No | Model | Accuracy | Mean ± stdAccuracy | F1 |
---|---|---|---|---|
2 | Seg-Unet + ClasSeg | 95.27% | 82.27% ± 29.60% | 94.57% |
3 | Seg-Unet + ClasSegDis Patch | 77.29% | 80.37% ± 13.72% | 78.58% |
4 | Seg-Unet + ClasSegDis Global | 94.32% | 93.97% ± 5.61% | 94.42% |
5 | Seg-Unet + ClasSegDis Patch + Global | 99.05% | 96.30% ± 6.41% | 99.03% |
No. | Model | Accuracy | MeanIoU |
---|---|---|---|
1 | MobileNet V2 [12] | 93.60% | |
2 | VGG16 [13] | 90.50% | |
3 | RSS-BW with VGG16-B [14] | 86.93% | |
4 | U-Net [8] | 38.30% | |
5 | Seg-Net [9] | 57.10% | |
6 | Seg-Unet [15] | 69.50% | |
7 | Seg-Unet with Clas. and Seg. [7] | 95.30% | 77.28% |
8 | Seg-Unet with Clas., Seg., and distance features [16] | 97.16% | 78.83% |
9 | Our proposed method (Patch) | 77.29% | 66.53% |
Our proposed method (Global) | 94.32% | 78.89% | |
Our proposed method (Gloal + Patch) | 99.05% | 84.84% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Do, N.-T.; Jung, S.-T.; Yang, H.-J.; Kim, S.-H. Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection. Diagnostics 2021, 11, 691. https://doi.org/10.3390/diagnostics11040691
Do N-T, Jung S-T, Yang H-J, Kim S-H. Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection. Diagnostics. 2021; 11(4):691. https://doi.org/10.3390/diagnostics11040691
Chicago/Turabian StyleDo, Nhu-Tai, Sung-Taek Jung, Hyung-Jeong Yang, and Soo-Hyung Kim. 2021. "Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection" Diagnostics 11, no. 4: 691. https://doi.org/10.3390/diagnostics11040691
APA StyleDo, N. -T., Jung, S. -T., Yang, H. -J., & Kim, S. -H. (2021). Multi-Level Seg-Unet Model with Global and Patch-Based X-ray Images for Knee Bone Tumor Detection. Diagnostics, 11(4), 691. https://doi.org/10.3390/diagnostics11040691