Applying MRI Intensity Normalization on Non-Bone Tissues to Facilitate Pseudo-CT Synthesis from MRI
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chest Imaging Acquisition for Cancer Treatment
2.2. Abdominal Imaging Acquisition for Lesion Diagnosis
2.3. MRI Intensity Normalization
2.4. Pseudo-CT Synthesis from MRI
2.5. Evaluation Study
3. Results
3.1. Chest Imaging for Cancer Treatment
3.2. Abdominal Imaging for Lesion Detection
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, M.A.; Payne, G.S. Radiotherapy planning using MRI. Phys. Med. Biol. 2015, 60, R323–R361. [Google Scholar] [CrossRef] [PubMed]
- Torresin, A.; Brambilla, M.G.; Monti, A.F.; Moscato, A.; Brockmann, M.A.; Schad, L.; Attenberger, U.I.; Lohr, F. Review of potential improvements using MRI in the radiotherapy workflow. Z. Med. Phys. 2015, 25, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Elter, A.; Dorsch, S.; Mann, P.; Runz, A.; Johnen, W.; Spindeldreier, C.K.; Klüter, S.; Karger, C.P. End-to-end test of an online adaptive treatment procedure in MR-guided radiotherapy using a phantom with anthropomorphic structures. Phys. Med. Biol. 2019, 64, 225003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klüter, S. Technical design and concept of a 0.35 T MR-Linac. Clin. Transl. Radiat. Oncol. 2019, 18, 98–101. [Google Scholar] [CrossRef] [Green Version]
- Kraus, K.M.; Jäkel, O.; Niebuhr, N.I.; Pfaffenberger, A. Generation of synthetic CT data using patient specific daily MR image data and image registration. Phys. Med. Biol. 2017, 62, 1358–1377. [Google Scholar] [CrossRef]
- Burgos, N.; Cardoso, M.J.; Thielemans, K.; Modat, M.; Pedemonte, S.; Dickson, J.; Barnes, A.; Ahmed, R.; Mahoney, C.J.; Schott, J.M.; et al. Attenuation correction synthesis for hybrid PET-MR scanners: Application to brain studies. IEEE Trans. Med. Imaging 2014, 33, 2332–2341. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; An, H. Attenuation correction of PET/MR imaging. Magn. Reson. Imaging Clin. N. Am. 2017, 25, 245–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korhonen, J.; Kapanen, M.; Keyriläinen, J.; Seppälä, T.; Tenhunen, M. A dual model HU conversion from MRI intensity values within and outside of bone segment for MRI-based radiotherapy treatment planning of prostate cancer. Med. Phys. 2014, 41, 011704. [Google Scholar] [CrossRef] [PubMed]
- Edmund, J.M.; Nyholm, T. A review of substitute CT generation for MRI-only radiation therapy. Radiat. Oncol. 2017, 12, 28. [Google Scholar] [CrossRef] [PubMed]
- Hsu, S.H.; DuPre, P.; Peng, Q.; Tomé, W.A. A technique to generate synthetic CT from MRI for abdominal radiotherapy. J. Appl. Clin. Med. Phys. 2020, 21, 136–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leu, S.C.; Huang, Z.; Lin, Z. Generation of pseudo-CT using high-degree polynomial regression on dual-contrast pelvic MRI data. Sci. Rep. 2020, 10, 8118. [Google Scholar] [CrossRef] [PubMed]
- Vovk, U.; Pernus, F.; Likar, B. A review of methods for correction of intensity inhomogeneity in MRI. IEEE Trans. Med. Imaging 2007, 26, 405–421. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.Y.; Seethamraju, R.T.; Patel, P.; Hahn, P.F.; Kirsch, J.E.; Guimaraes, A.R. Body MR imaging: Artifacts, k-space, and solutions. Radiographics 2015, 35, 1439–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhuge, Y.; Udupa, J.K.; Liu, J.; Saha, P.K. Image background inhomogeneity correction in MRI via intensity standardization. Comput. Med. Imaging Graph. Off. J. Comput. Med. Imaging Soc. 2009, 33, 7–16. [Google Scholar] [CrossRef] [Green Version]
- Marchant, T.E.; Moore, C.J.; Rowbottom, C.G.; MacKay, R.I.; Williams, P.C. Shading correction algorithm for improvement of cone-beam CT images in radiotherapy. Phys. Med. Biol. 2008, 53, 5719–5733. [Google Scholar] [CrossRef] [PubMed]
- Bezdek, J. Pattern Recognition With Fuzzy Objective Function Algorithms; Plenum Press: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Mattes, D.; Haynor, D.; Vesselle, H.; Lewellyn, T.; Eubank, W. Nonrigid Multimodality Image Registration; SPIE: Bellingham, WA, USA, 2001; Volume 4322. [Google Scholar]
- Nie, D.; Cao, X.; Gao, Y.; Wang, L.; Shen, D. Estimating CT image from MRI data using 3D fully convolutional networks. In Proceedings of the Deep Learning and Data Labeling for Medical Applications: First International Workshop, LABELS 2016, and Second International Workshop, DLMIA 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, 21 October 2016; Springer: Cham, Switzerland, 2016; pp. 170–178. [Google Scholar] [CrossRef] [Green Version]
- Axel, L.; Costantini, J.; Listerud, J. Intensity correction in surface-coil MR imaging. AJR Am. J. Roentgenol. 1987, 148, 418–420. [Google Scholar] [CrossRef] [Green Version]
- Niebuhr, N.I.; Johnen, W.; Güldaglar, T.; Runz, A.; Echner, G.; Mann, P.; Möhler, C.; Pfaffenberger, A.; Jäkel, O.; Greilich, S. Technical note: Radiological properties of tissue surrogates used in a multimodality deformable pelvic phantom for MR-guided radiotherapy. Med. Phys. 2016, 43, 908–916. [Google Scholar] [CrossRef] [PubMed]
- Largent, A.; Barateau, A.; Nunes, J.C.; Lafond, C.; Greer, P.B.; Dowling, J.A.; Saint-Jalmes, H.; Acosta, O.; de Crevoisier, R. Pseudo-CT generation for MRI-only radiation therapy treatment planning: Comparison among patch-based, atlas-based, and bulk density methods. Int. J. Radiat. Oncol. Biol. Phys. 2019, 103, 479–490. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Xue, Z.; Cao, T.; Liao, S. Unpaired Whole-Body MR to CT Synthesis with Correlation Coefficient Constrained Adversarial Learning; SPIE: Bellingham, WA, USA, 2019; Volume 10949. [Google Scholar]
- Jin, C.B.; Kim, H.; Liu, M.; Jung, W.; Joo, S.; Park, E.; Ahn, Y.S.; Han, I.H.; Lee, J.I.; Cui, X. Deep CT to MR synthesis using paired and unpaired data. Sensors 2019, 19, 2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapanen, M.; Tenhunen, M. T1/T2*-weighted MRI provides clinically relevant pseudo-CT density data for the pelvic bones in MRI-only based radiotherapy treatment planning. Acta Oncol. 2013, 52, 612–618. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, K.-Y.; Lu, H.-Y.; Yang, C.-C. Applying MRI Intensity Normalization on Non-Bone Tissues to Facilitate Pseudo-CT Synthesis from MRI. Diagnostics 2021, 11, 816. https://doi.org/10.3390/diagnostics11050816
Hou K-Y, Lu H-Y, Yang C-C. Applying MRI Intensity Normalization on Non-Bone Tissues to Facilitate Pseudo-CT Synthesis from MRI. Diagnostics. 2021; 11(5):816. https://doi.org/10.3390/diagnostics11050816
Chicago/Turabian StyleHou, Kuei-Yuan, Hao-Yuan Lu, and Ching-Ching Yang. 2021. "Applying MRI Intensity Normalization on Non-Bone Tissues to Facilitate Pseudo-CT Synthesis from MRI" Diagnostics 11, no. 5: 816. https://doi.org/10.3390/diagnostics11050816
APA StyleHou, K. -Y., Lu, H. -Y., & Yang, C. -C. (2021). Applying MRI Intensity Normalization on Non-Bone Tissues to Facilitate Pseudo-CT Synthesis from MRI. Diagnostics, 11(5), 816. https://doi.org/10.3390/diagnostics11050816