A Stepwise Approach Using Metastatic Lymph Node Ratio-Combined Thyroglobulin for Customization of [18F]FDG-PET/CT Indication to Detect Persistent Disease in Patients with Papillary Thyroid Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Assays
2.3. Image Acquisition
2.4. Study Design
2.5. Statistical Analyses
3. Results
3.1. Patient Characteristics
3.2. Clinicopathological Factors Related to FDG-avid PD on [18F]FDG-PET/CT
3.3. Identification of the PET/CT-Indicated Group for Detecting FDG-avid PD Using the Combined Criteria Including MLN Ratio and Serum Tg
3.4. Comparison of the Diagnostic Performance of [18F]FDG-PET/CT for Detecting PD
3.5. Distributions of Iodine Uptake Patterns According to the Presence of FDG-avid PD
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hay, I.D. Management of Patients with Low-Risk Papillary Thyroid Carcinoma. Endocr. Pract. 2007, 13, 521–533. [Google Scholar] [CrossRef]
- Mazzaferri, E.L. Management of Low-Risk Differentiated Thyroid Cancer. Endocr. Pract. 2007, 13, 498–512. [Google Scholar] [CrossRef]
- Kim, H.; Kim, T.H.; Choe, J.-H.; Kim, J.-H.; Kim, J.S.; Oh, Y.L.; Hahn, S.Y.; Shin, J.H.; Chi, S.A.; Jung, S.-H.; et al. Patterns of Initial Recurrence in Completely Resected Papillary Thyroid Carcinoma. Thyroid 2017, 27, 908–914. [Google Scholar] [CrossRef]
- Leboulleux, S.; Rubino, C.; Baudin, E.; Caillou, B.; Hartl, D.M.; Bidart, J.-M.; Travagli, J.-P.; Schlumberger, M. Prognostic Factors for Persistent or Recurrent Disease of Papillary Thyroid Carcinoma with Neck Lymph Node Metastases and/or Tumor Extension beyond the Thyroid Capsule at Initial Diagnosis. J. Clin. Endocrinol. Metab. 2005, 90, 5723–5729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bates, M.F.; Lamas, M.R.; Randle, R.W.; Long, K.L.; Pitt, S.C.; Schneider, D.F.; Sippel, R.S. Back so soon? Is early recurrence of papillary thyroid cancer really just persistent disease? Surgery 2018, 163, 118–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iwano, S.; Kato, K.; Ito, S.; Tsuchiya, K.; Naganawa, S. FDG-PET performed concurrently with initial I-131 ablation for differentiated thyroid cancer. Ann. Nucl. Med. 2011, 26, 207–213. [Google Scholar] [CrossRef]
- Marcus, C.; Antoniou, A.; Rahmim, A.; Ladenson, P.; Subramaniam, R.M. Fluorodeoxyglucose positron emission tomography/computerized tomography in differentiated thyroid cancer management: Importance of clinical justification and value in predicting survival. J. Med Imaging Radiat. Oncol. 2015, 59, 281–288. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Larson, S.M.; Fazzari, M.; Tickoo, S.K.; Kolbert, K.; Sgouros, G.; Yeung, H.; Macapinlac, H.; Rosai, J.; Robbins, R.J. Prognostic Value of [18F]Fluorodeoxyglucose Positron Emission Tomographic Scanning in Patients with Thyroid Cancer. J. Clin. Endocrinol. Metab. 2000, 85, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Na, S.J.; Yoo, I.R.; O, J.H.; Lin, C.; Lin, Q.; Kim, S.H.; Chung, S.K. Diagnostic accuracy of 18F-fluorodeoxyglucose positron emission tomography/computed tomography in differentiated thyroid cancer patients with elevated thyroglobulin and negative 131I whole body scan: Evaluation by thyroglobulin level. Ann. Nucl. Med. 2011, 26, 26–34. [Google Scholar] [CrossRef]
- Leboulleux, S.; El Bez, I.; Borget, I.; Elleuch, M.; Déandreis, D.; Al Ghuzlan, A.; Chougnet, C.; Bidault, F.; Mirghani, H.; Lumbroso, J.; et al. Postradioiodine Treatment Whole-Body Scan in the Era of 18-Fluorodeoxyglucose Positron Emission Tomography for Differentiated Thyroid Carcinoma with Elevated Serum Thyroglobulin Levels. Thyroid 2012, 22, 832–838. [Google Scholar] [CrossRef]
- Netzel, B.C.; Grebe, S.K.G.; Leon, B.G.C.; Castro, M.R.; Clark, P.M.; Hoofnagle, A.N.; Spencer, C.A.; Turcu, A.F.; Algeciras-Schimnich, A. Thyroglobulin (Tg) Testing Revisited: Tg Assays, TgAb Assays, and Correlation of Results with Clinical Outcomes. J. Clin. Endocrinol. Metab. 2015, 100, E1074–E1083. [Google Scholar] [CrossRef] [PubMed]
- Grebe, S.K.; Hay, I.D. Thyroid Cancer Nodal Metastases: Biologic Significance and Therapeutic Considerations. Surg. Oncol. Clin. N. Am. 1996, 5, 43–63. [Google Scholar] [CrossRef]
- Haugen, B.R.; Alexander, E.K.; Bible, K.C.; Doherty, G.M.; Mandel, S.J.; Nikiforov, Y.E.; Pacini, F.; Randolph, G.W.; Sawka, A.M.; Schlumberger, M.; et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016, 26, 1–133. [Google Scholar] [CrossRef] [Green Version]
- Jeon, S.; Kwon, S.Y.; Ryu, Y.J.; Kang, S.-R.; Yoo, S.W.; Cho, S.-G.; Kim, J.; Song, H.-C.; Sohn, S.-J.; Bom, H.-S.; et al. Combined role of lymph node ratio and serum thyroglobulin levels in predicting prognosis of papillary thyroid carcinoma. Nucl. Med. Commun. 2020, 41, 733–739. [Google Scholar] [CrossRef]
- Nunes, J.H.V.; Clark, J.R.; Gao, K.; Chua, E.; Campbell, P.; Niles, N.; Gargya, A.; Elliott, M.S. Prognostic Implications of Lymph Node Yield and Lymph Node Ratio in Papillary Thyroid Carcinoma. Thyroid 2013, 23, 811–816. [Google Scholar] [CrossRef]
- Schneider, D.F.; Chen, H.; Sippel, R.S. Impact of Lymph Node Ratio on Survival in Papillary Thyroid Cancer. Ann. Surg. Oncol. 2012, 20, 1906–1911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcus, C.; Whitworth, P.W.; Surasi, D.S.; Pai, S.I.; Subramaniam, R.M. PET/CT in the Management of Thyroid Cancers. Am. J. Roentgenol. 2014, 202, 1316–1329. [Google Scholar] [CrossRef] [Green Version]
- Seo, J.H.; Lee, S.W.; Ahn, B.-C.; Lee, J. Recurrence detection in differentiated thyroid cancer patients with elevated serum level of antithyroglobulin antibody: Special emphasis on using18F-FDG PET/CT. Clin. Endocrinol. 2010, 72, 558–563. [Google Scholar] [CrossRef]
- Bertagna, F.; Biasiotto, G.; Orlando, E.; Bosio, G.; Giubbini, R. Role of (1)(8)F-fluorodeoxyglucose positron emission tomography/computed tomography in patients affected by differentiated thyroid carcinoma, high thyroglobulin level, and negative (1)(3)(1)I scan: Review of the literature. Jpn. J. Radiol. 2010, 28, 629–636. [Google Scholar] [CrossRef]
- Giovanella, L.; Trimboli, P.; Verburg, F.A.; Treglia, G.; Piccardo, A.; Foppiani, L.; Ceriani, L. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2013, 40, 874–880. [Google Scholar] [CrossRef]
- Albano, D.; Tulchinsky, M.; Dondi, F.; Mazzoletti, A.; Lombardi, D.; Bertagna, F.; Giubbini, R. Thyroglobulin doubling time offers a better threshold than thyroglobulin level for selecting optimal candidates to undergo localizing [18F]FDG PET/CT in non-iodine avid differentiated thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 461–468. [Google Scholar] [CrossRef] [PubMed]
- Kowalska, A.; Pałyga, I.; Gąsior-Perczak, D.; Walczyk, A.; Trybek, T.; Słuszniak, A.; Mężyk, R.; Góźdź, S. The Cut-Off Level of Recombinant Human TSH-Stimulated Thyroglobulin in the Follow-Up of Patients with Differentiated Thyroid Cancer. PLoS ONE 2015, 10, e0133852. [Google Scholar] [CrossRef] [PubMed]
- Randolph, G.W.; Duh, Q.Y.; Heller, K.S.; LiVolsi, V.A.; Mandel, S.J.; Steward, D.L.; Tufano, R.P.; Tuttle, R.M.; American Thyroid Association Surgical Affairs Committee’s Taskforce on Thyroid Cancer Nodal Surgery. The Prognostic Significance of Nodal Metastases from Papillary Thyroid Carcinoma Can Be Stratified Based on the Size and Number of Metastatic Lymph Nodes, as Well as the Presence of Extranodal Extension. Thyroid 2012, 22, 1144–1152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.; Song, Y.; Soh, E.Y. Prognostic Significance of the Number of Metastatic Lymph Nodes to Stratify the Risk of Recurrence. World J. Surg. 2014, 38, 858–862. [Google Scholar] [CrossRef]
- Jeong, G.-C.; Song, M.; Park, H.J.; Min, J.-J.; Bom, H.-S.; Cho, S.-G.; Park, K.S.; Kang, S.-R.; Kim, J.; Song, H.-C.; et al. Iodine Uptake Patterns on Post-ablation Whole Body Scans are Related to Elevated Serum Thyroglobulin Levels After Radioactive Iodine Therapy in Patients with Papillary Thyroid Carcinoma. Nucl. Med. Mol. Imaging 2016, 50, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.-W.; Lee, J.; Lee, H.J.; Seo, J.-H.; Kang, S.-M.; Bae, J.-H.; Ahn, B.-C. Enhanced Scintigraphic Visualization of Thyroglossal Duct Remnant during Hypothyroidism after Total Thyroidectomy: Prevalence and Clinical Implication in Patients with Differentiated Thyroid Cancer. Thyroid 2007, 17, 341–346. [Google Scholar] [CrossRef]
- Zhang, D.; Tang, J.; Kong, D.; Cui, Q.; Wang, K.; Gong, Y.; Wu, G. Impact of Gender and Age on the Prognosis of Differentiated Thyroid Carcinoma: A Retrospective Analysis Based on SEER. Horm. Cancer 2018, 9, 361–370. [Google Scholar] [CrossRef]
- Yorke, E.; Melck, A.; Wiseman, S.M. Impact of sex on the clinicopathological characteristics and prognosis of papillary thyroid cancer. Can. J. Surg. 2016, 59, 287–288. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values |
---|---|
Age (years) | |
Mean ± SD 1 (range) | 46.6 ± 11.9 (17–83) |
<55 | 321 (74.8%) |
≥55 | 108 (25.2%) |
Male/female | 94 (21.9%)/335 (78.1%) |
Size of primary tumor (cm) | |
Mean ± SD (range) | 1.2 ± 0.9 (0.2–6.0) |
<1.0 | 197 (45.9%) |
≥1.0 | 232 (54.1%) |
Multiplicity | |
Single/Multiple | 256 (59.7%)/173 (40.3%) |
Bilaterality | |
Absent/Present | 311 (72.5%)/118 (27.5%) |
ETE 2 | |
Absent/microscopic ETE/gross ETE | 264 (61.5%)/69 (16.1%)/96 (22.4%) |
T category * | |
T1a | 209 (48.7%) |
T1b | 97 (22.6%) |
T2 | 24 (5.6%) |
T3a | 5 (1.2%) |
T3b | 75 (17.5%) |
T4a | 19 (4.4%) |
N category * | |
N0a | 29 (6.7%) |
N1a | 304 (70.9%) |
N1b | 96 (22.4%) |
Lymph node (LN) characteristics | |
Number of removed LNs, median (range) | 8 (3–102) |
Number of metastatic LNs, median (range) | 2 (0–41) |
LN ratio, mean ± SD (range) | 0.4 ± 0.3 (0.0–1.0) |
Dose of administered 131I (GBq) | |
3.70 | 63 (14.7%) |
5.55 | 121 (28.2%) |
6.66 | 245 (57.1%) |
D0Tg 3 level (ng/mL) | |
Mean ± SD (range) | 8.1 ± 38.2 (0.0–500.0) |
Interval between surgery and PET/CT (days) | |
Mean ± SD (range) | 79.7 ± 19.3 (31–185) |
Parameters | FDG 1-Avid Persistent Disease (-) | FDG-Avid Persistent Disease (+) | Univariate Analysis | Multivariate Analysis | |
---|---|---|---|---|---|
(n = 397) | (n = 32) | p | OR 7 (95% CI 8) | p | |
Age (year) | 0.384 | ||||
<55 | 295 (91.9%) | 26 (8.1%) | |||
≥55 | 102 (94.4%) | 6 (5.6%) | |||
Sex | 0.027 | 2.465 (0.913–6.658) | 0.075 | ||
Female | 315 (94.0%) | 20 (6.0%) | |||
Male | 82 (87.2%) | 12 (12.8%) | |||
Size of tumor (cm) | 0.001 | 2.350 (0.777–7.105) | 0.131 | ||
<1.0 | 191 (96.9%) | 6 (3.1%) | |||
≥1.0 | 206 (88.8%) | 26 (11.2%) | |||
ETE 2 | 0.001 | 0.934 (0.024–36.808) | 0.972 | ||
Absent or microscopic ETE | 316 (94.9%) | 17 (5.1%) | |||
Gross ETE | 81 (84.4%) | 15 (15.6%) | |||
Multiplicity | 0.056 | ||||
Solitary | 242 (94.5%) | 14 (5.5%) | |||
Multiple | 155 (89.6%) | 18 (10.4%) | |||
Bilaterality | 0.188 | ||||
Absent | 291 (93.6%) | 20 (6.4%) | |||
Present | 106 (89.8%) | 12 (10.2%) | |||
T category | <0.001 | 2.319 (0.057–93.616) | 0.656 | ||
<3b | 318 (94.9%) | 17 (5.1%) | |||
≥3b | 79 (84.0%) | 15 (16.0%) | |||
N category | <0.001 | 2.039 (0.584–7.119) | 0.262 | ||
N0a or N1a | 319 (95.8%) | 14 (4.2%) | |||
N1b | 78 (81.2%) | 18 (18.8%) | |||
Number of MLNs 3, Median (range) | 2 (0–13) | 6 (1–26) | <0.001 | 1.038 (0.057–1.128) | 0.380 |
LNR 4, mean ± SD 5 | 0.38 ± 0.29 | 0.54 ± 0.29 | 0.004 | 4.074 (0.721–23.014) | 0.111 |
D0Tg 6, mean ± SD | 3.4 ± 10.6 | 66.0 ± 122.1 | <0.001 | 1.043 (1.025–1.062) | <0.001 |
Criteria | AUC 4 | Sensitivity | Specificity | PPV 5 | NPV 6 | Accuracy | p-Value |
---|---|---|---|---|---|---|---|
LNR 1-combined | 0.877 | 78.1 | 93.5 | 49.0 | 98.2 | 92.3 | |
D0Tg 2 > 6.0 (ng/mL) | 0.876 | 84.4 | 89.2 | 38.6 | 98.6 | 88.8 | <0.001 * |
Number of MLN 3 > 5 | 0.649 | 53.1 | 81.1 | 18.5 | 95.6 | 79.0 | <0.001 * |
LNR > 0.51 | 0.574 | 59.4 | 74.6 | 15.8 | 95.8 | 73.4 | <0.001 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piao, H.H.; Jeon, S.; Yoo, S.W.; Ryu, Y.J.; Kim, D.-Y.; Pyo, A.; Bom, H.-S.; Min, J.-J.; Kwon, S.Y. A Stepwise Approach Using Metastatic Lymph Node Ratio-Combined Thyroglobulin for Customization of [18F]FDG-PET/CT Indication to Detect Persistent Disease in Patients with Papillary Thyroid Cancer. Diagnostics 2021, 11, 836. https://doi.org/10.3390/diagnostics11050836
Piao HH, Jeon S, Yoo SW, Ryu YJ, Kim D-Y, Pyo A, Bom H-S, Min J-J, Kwon SY. A Stepwise Approach Using Metastatic Lymph Node Ratio-Combined Thyroglobulin for Customization of [18F]FDG-PET/CT Indication to Detect Persistent Disease in Patients with Papillary Thyroid Cancer. Diagnostics. 2021; 11(5):836. https://doi.org/10.3390/diagnostics11050836
Chicago/Turabian StylePiao, Hong Hua, Subin Jeon, Su Woong Yoo, Young Jae Ryu, Dong-Yeon Kim, Ayoung Pyo, Hee-Seung Bom, Jung-Joon Min, and Seong Young Kwon. 2021. "A Stepwise Approach Using Metastatic Lymph Node Ratio-Combined Thyroglobulin for Customization of [18F]FDG-PET/CT Indication to Detect Persistent Disease in Patients with Papillary Thyroid Cancer" Diagnostics 11, no. 5: 836. https://doi.org/10.3390/diagnostics11050836
APA StylePiao, H. H., Jeon, S., Yoo, S. W., Ryu, Y. J., Kim, D. -Y., Pyo, A., Bom, H. -S., Min, J. -J., & Kwon, S. Y. (2021). A Stepwise Approach Using Metastatic Lymph Node Ratio-Combined Thyroglobulin for Customization of [18F]FDG-PET/CT Indication to Detect Persistent Disease in Patients with Papillary Thyroid Cancer. Diagnostics, 11(5), 836. https://doi.org/10.3390/diagnostics11050836