Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Image Data Acquisitions
2.3. Manual Annotations and Reference Measurements
2.4. Framework for Measurements of Carpal Configurations during Dynamic Wrist movement
2.4.1. Data Pre-Processing and Augmentation
2.4.2. Segmentation Framework
2.4.3. Post-Processing
2.4.4. Training and Evaluation
2.4.5. Algorithm-Based Measurements of Carpal Configurations
2.5. Statistical Analysis
3. Results
3.1. Segmentation Performance
3.2. Inter-Method and Inter-Reader Reliability Analysis
3.3. Multivariable Comparative Analyses of the SL and LT Gap Widths
3.4. Assessment of Clinical Applicability in a Patient
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, C.B.; Foster, B.H.; Borgese, M.; Boutin, R.D.; Bateni, C.; Boonsri, P.; Bayne, C.O.; Szabo, R.M.; Nayak, K.S.; Chaudhari, A.J. Real-time three-dimensional MRI for the assessment of dynamic carpal instability. PLoS ONE 2019, 14, e0222704. [Google Scholar] [CrossRef] [Green Version]
- Schernberg, F. Roentgenographic examination of the wrist: A systematic study of the normal, lax and injured wrist Part 2: Stress views. J. Hand Surg. 1990, 15, 220–228. [Google Scholar] [CrossRef]
- Moser, T.; Dosch, J.-C.; Moussaoui, A.; Dietemann, J.-L. Wrist Ligament Tears: Evaluation of MRI and Combined MDCT and MR Arthrography. Am. J. Roentgenol. 2007, 188, 1278–1286. [Google Scholar] [CrossRef]
- Theumann, N.H.; Etechami, G.; Duvoisin, B.; Wintermark, M.; Schnyder, P.; Favarger, N.; Gilula, L.A. Association between Extrinsic and Intrinsic Carpal Ligament Injuries at MR Arthrography and Carpal Instability at Radiography: Initial Observations. Radiology 2006, 238, 950–957. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, H.K.; Ballet, F.L. The SLAC wrist: Scapholunate advanced collapse pattern of degenerative arthritis. J. Hand Surg. 1984, 9, 358–365. [Google Scholar] [CrossRef]
- Kiefhaber, T.R. Management of Scapholunate Advanced Collapse Pattern of Degenerative Arthritis of the Wrist. J. Hand Surg. 2009, 34, 1527–1530. [Google Scholar] [CrossRef]
- Taleisnik, J. Current concepts review. Carpal instability. J. Bone Jt. Surg. Am. Vol. 1988, 70, 1262–1268. [Google Scholar] [CrossRef] [Green Version]
- Boutin, R.D.; Buonocore, M.H.; Immerman, I.; Ashwell, Z.; Sonico, G.J.; Szabo, R.M.; Chaudhari, A.J. Real-Time Magnetic Resonance Imaging (MRI) during Active Wrist motion—Initial Observations. PLoS ONE 2013, 8, e84004. [Google Scholar] [CrossRef]
- Manuel, J.; Moran, S.L. The Diagnosis and Treatment of Scapholunate Instability. Orthop. Clin. N. Am. 2007, 38, 261–277. [Google Scholar] [CrossRef]
- Ramamurthy, N.K.; Chojnowski, A.J.; Toms, A.P. Imaging in carpal instability. J. Hand Surg. 2015, 41, 22–34. [Google Scholar] [CrossRef]
- Griswold, M.A.; Jakob, P.M.; Heidemann, R.; Nittka, M.; Jellus, V.; Wang, J.; Kiefer, B.; Haase, A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 2002, 47, 1202–1210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pruessmann, K.P.; Weiger, M.; Scheidegger, M.B.; Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn. Reson. Med. 1999, 42, 952–962. [Google Scholar] [CrossRef]
- Tsao, J.; Boesiger, P.; Pruessmann, K.P. K-T BLAST and K-T SENSE: Dynamic MRI with high frame rate exploiting spatiotemporal correlations. Magn. Reson. Med. 2003, 50, 1031–1042. [Google Scholar] [CrossRef] [PubMed]
- Uecker, M.; Zhang, S.; Voit, D.; Karaus, A.; Merboldt, K.-D.; Frahm, J. Real-time MRI at a resolution of 20 ms. NMR Biomed. 2010, 23, 986–994. [Google Scholar] [CrossRef] [Green Version]
- Feng, L.; Tyagi, N.; Otazo, R. MRSIGMA: Magnetic Resonance SIGnature MAtching for real-time volumetric imaging. Magn. Reson. Med. 2020, 84, 1280–1292. [Google Scholar] [CrossRef] [PubMed]
- van Amerom, J.F.; Lloyd, D.F.; Deprez, M.; Price, A.N.; Malik, S.J.; Pushparajah, K.; van Poppel, M.P.; Rutherford, M.A.; Razavi, R.; Hajnal, J.V. Fetal whole-heart 4D imaging using motion-corrected multi-planar real-time MRI. Magn. Reson. Med. 2019, 82, 1055–1072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krohn, S.; Gersdorff, N.; Wassmann, T.; Merboldt, K.-D.; Joseph, A.A.; Buergers, R.; Frahm, J. Real-time MRI of the temporomandibular joint at 15 frames per second—A feasibility study. Eur. J. Radiol. 2016, 85, 2225–2230. [Google Scholar] [CrossRef] [PubMed]
- Krohn, S.; Joseph, A.A.; Voit, D.; Michaelis, T.; Merboldt, K.-D.; Buergers, R.; Frahm, J. Multi-slice real-time MRI of temporomandibular joint dynamics. Dentomaxillofac. Radiol. 2019, 48, 20180162. [Google Scholar] [CrossRef] [PubMed]
- Frahm, J.; Schätz, S.; Untenberger, M.; Zhang, S.; Voit, D.; Merboldt, K.D.; Sohns, J.M.; Lotz, J.; Uecker, M. On the Temporal Fidelity of Nonlinear Inverse Reconstructions for Real-Time MRI—The motion Challenge. Open Med. Imaging J. 2014, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.; Kowallick, J.T.; Merboldt, K.; Voit, D.; Schaetz, S.; Zhang, S.; Sohns, J.M.; Lotz, J.; Frahm, J. Real-time flow MRI of the aorta at a resolution of 40 msec. J. Magn. Reson. Imaging 2014, 40, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Niebergall, A.; Zhang, S.; Kunay, E.; Keydana, G.; Job, M.; Uecker, M.; Frahm, J. Real-time MRI of speaking at a resolution of 33 ms: Undersampled radial FLASH with nonlinear inverse reconstruction. Magn. Reson. Med. 2012, 69, 477–485. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.; Pinto, A.; Alves, V.; Silva, C.A. Brain Tumor Segmentation Using Convolutional Neural Networks in MRI Images. IEEE Trans. Med. Imaging 2016, 35, 1240–1251. [Google Scholar] [CrossRef]
- Wu, B.; Fang, Y.; Lai, X. Left ventricle automatic segmentation in cardiac MRI using a combined CNN and U-net approach. Comput. Med. Imaging Graph. 2020, 82, 101719. [Google Scholar] [CrossRef]
- Essa, E.; Aldesouky, D.; Hussein, S.; Rashad, M.Z. Neuro-fuzzy patch-wise R-CNN for multiple sclerosis segmentation. Med. Biol. Eng. Comput. 2020, 58, 2161–2175. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, Z.; Jang, H.; Samsonov, A.; Zhao, G.; Kijowski, R. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging. Magn. Reson. Med. 2018, 79, 2379–2391. [Google Scholar] [CrossRef]
- Brui, E.; Efimtcev, A.Y.; Fokin, V.A.; Fernandez, R.; Levchuk, A.; Ogier, A.C.; Samsonov, A.A.; Mattei, J.P.; Melchakova, I.V.; Bendahan, D.; et al. Deep learning-based fully automatic segmentation of wrist cartilage in MR images. NMR Biomed. 2020, 33, e4320. [Google Scholar] [CrossRef]
- Schock, J.; Truhn, D.; Abrar, D.B.; Merhof, D.; Conrad, S.; Post, M.; Mittelstrass, F.; Kuhl, C.; Nebelung, S. Automated Analysis of Alignment in Long-Leg Radiographs by Using a Fully Automated Support System Based on Artificial Intelligence. Radiol. Artif. Intell. 2021, 3, e200198. [Google Scholar] [CrossRef] [PubMed]
- Buda, M.; Saha, A.; Mazurowski, M.A. Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm. Comput. Biol. Med. 2019, 109, 218–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, Z.; Yahya, N.; Alsaih, K.; Ali, S.S.A.; Meriaudeau, F. Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI. Sensors 2020, 20, 3183. [Google Scholar] [CrossRef]
- George, W. Digital Image Warping, 3rd ed.; IEEE Computer Society Press: Washington, DC, USA, 1994. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation. In Lecture Notes in Computer Science; Springer International Publishing: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Zhang, J.; Li, C.; Kulwa, F.; Zhao, X.; Sun, C.; Li, Z.; Jiang, T.; Li, H.; Qi, S. A Multiscale CNN-CRF Framework for Environmental Microorganism Image Segmentation. BioMed Res. Int. 2020, 2020, 4621403. [Google Scholar] [CrossRef] [PubMed]
- Zheng, S.; Jayasumana, S.; Romera-Paredes, B.; Vineet, V.; Su, Z.; Du, D.; Huang, C.; Torr, P.H.S. Conditional Random Fields as Recurrent Neural Networks. In Proceedings of the 2015 IEEE International Conference on Computer Vision (ICCV), Araucano Park, Las Condes, Chile, 11–18 December 2015; pp. 1529–1537. [Google Scholar]
- Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 40, 834–848. [Google Scholar] [CrossRef]
- Moldovanu, S.; Moraru, L.; Biswas, A. Robust Skull-Stripping Segmentation Based on Irrational Mask for Magnetic Resonance Brain Images. J. Digit. Imaging 2015, 28, 738–747. [Google Scholar] [CrossRef] [Green Version]
- Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.; Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antia, L.; et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library; Advances in Neural Information Processing Systems 32; Curran Associates, Inc.: Vancouver, BC, Canada, 2019. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. Published as a conference paper at the 3rd International Conference for Learning Representations, San Diego, California, USA. arXiv 2015, arXiv:1412.6980v9. [Google Scholar]
- Jadon, S. A survey of loss functions for semantic segmentation. In Proceedings of the 2020 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Viña del Mar, Chile, 27–29 October 2020; pp. 1–7. [Google Scholar]
- Sudre, C.H.; Li, W.; Vercauteren, T.; Ourselin, S.; Cardoso, M.J. Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations. In Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support; Springer International Publishing: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Ribera, J.; Güera, D.; Chen, Y.; Delp, E. Weighted Hausdorff Distance: A Loss Function for Object Localization. arXiv 2018, arXiv:1806.07564. [Google Scholar]
- Lee, T.C.; Kashyap, R.L.; Chu, C.N. Building Skeleton Models via 3-D Medial Surface Axis Thinning Algorithms. CVGIP Graph. Models Image Process. 1994, 56, 462–478. [Google Scholar] [CrossRef]
- Autoregressive Moving Average Models. In Time Series; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2011.
- Zhu, S.; Wathen, A.J. Essential formulae for restricted maximum likelihood and its derivatives associated with the linear mixed models. arXiv 2018, arXiv:1805.05188. [Google Scholar]
- Beaumont, C. Comparison of Henderson\textquotesingles Method I and Restricted Maximum Likelihood Estimation of Genetic Parameters of Reproductive Traits. Poult. Sci. 1991, 70, 1462–1468. [Google Scholar] [CrossRef]
- Meyer, A.; Chlebus, G.; Schreiber, A.; Hansen, C.; Rak, M.; Schindele, D.; Schostak, M.; van Ginneken, B.; Schenk, A.; Meine, H.; et al. Anisotropic 3D Multi-Stream CNN for Accurate Prostate Segmentation from Multi-Planar MRI. Comput. Methods Programs Biomed. 2021, 200, 105821. [Google Scholar] [CrossRef]
- Belal, S.L.; Sadik, M.; Kaboteh, R.; Enqvist, O.; Ulén, J.; Poulsen, M.H.; Simonsen, J.; Høilund-Carlsen, P.F.; Edenbrandt, L.; Trägårdh, E. Deep learning for segmentation of 49 selected bones in CT scans: First step in automated PET/CT-based 3D quantification of skeletal metastases. Eur. J. Radiol. 2019, 113, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andersson, J.K. Treatment of scapholunate ligament injury. EFORT Open Rev. 2017, 2, 382–393. [Google Scholar] [CrossRef]
- Chennagiri, R.J.R.; Lindau, T.R.; Chennagiri, R.J.R.; Lindau, T.R. Assessment of scapholunate instability and review of evidence for management in the absence of arthritis. J. Hand Surg. 2013, 38, 727–738. [Google Scholar] [CrossRef]
- Spaans, A.J.; Van Minnen, P.; Prins, H.J.; Korteweg, M.A.; Schuurman, A.H. The Value of 3.0-Tesla MRI in Diagnosing Scapholunate Ligament Injury. J. Wrist Surg. 2013, 2, 069–072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greditzer, H.G.; Kam, C.C.; Gray, R.R.; Clifford, P.D.; Mintz, D.N.; Jose, J.; Zeidenberg, J. Optimal detection of scapholunate ligament tears with MRI. Acta Radiol. 2016, 57, 1508–1514. [Google Scholar] [CrossRef]
- Zhou, H.; Hallac, R.R.; Yuan, Q.; Ding, Y.; Zhang, Z.; Xie, X.-J.; Francis, F.; Roehrborn, C.G.; Sims, R.D.; Costa, D.N.; et al. Incorporating Oxygen-Enhanced MRI into Multi-Parametric Assessment of Human Prostate Cancer. Diagnostics 2017, 7, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dachena, C.; Casu, S.; Fanti, A.; Lodi, M.B.; Mazzarella, G. Combined Use of MRI, fMRIand Cognitive Data for Alzheimer’s Disease: Preliminary Results. Appl. Sci. 2019, 9, 3156. [Google Scholar] [CrossRef] [Green Version]
T2-Weighted | PD-Weighted fs | Radial Real-Time | |
---|---|---|---|
Sequence type | TSE | TSE | FLASH |
Turbo Factor | 10 | 10 | n.a. |
Orientation | ax | cor, ax, sag | cor |
Repetition time (ms) | 5820 | 3200 | 4.5 |
Echo time (ms) | 114 | 33 | 2.5 |
Field of View (mm) | 150 × 150 | 120 × 120 | 168 × 168 |
Image matrix (pixels) | 384 × 384 | 256 × 256 | 168 × 168 |
Pixel size (mm/pixel) | 0.4 × 0.4 | 0.5 × 0.5 | 1.0 × 1.0 |
Flip angle (°) | 15 | 180 | 7 |
Slices (n) | 20 | 20 | 1 |
Slice thickness (mm) | 3 | 2 | 6 |
Examination time (sec) | 194 | 174 | 30 |
Reader 1 vs. Reader 2 | Automatic vs. Reader 1 | Automatic vs. Reader 2 | ||||
---|---|---|---|---|---|---|
Training Data | Test Data | Training Data | Test Data | Training Data | Test Data | |
Distal Radius | 0.962 ± 0.060 | 0.972 ± 0.014 | 0.968 ± 0.061 | 0.969 ± 0.054 | 0.964 ± 0.025 | 0.957 ± 0.057 |
Distal Ulna | 0.952 ± 0.044 | 0.954 ± 0.025 | 0.960 ± 0.039 | 0.957 ± 0.056 | 0.948 ± 0.029 | 0.964 ± 0.025 |
Scaphoid | 0.964 ± 0.019 | 0.957 ± 0.022 | 0.970 ± 0.020 | 0.970 ± 0.022 | 0.952 ± 0.020 | 0.952 ± 0.024 |
Lunate | 0.966 ± 0.016 | 0.964 ± 0.013 | 0.975 ± 0.014 | 0.972 ± 0.040 | 0.958 ± 0.018 | 0.954 ± 0.040 |
Triquetrum | 0.964 ± 0.021 | 0.960 ± 0.019 | 0.969 ± 0.018 | 0.970 ± 0.021 | 0.955 ± 0.017 | 0.950 ± 0.026 |
Hamate | 0.966 ± 0.018 | 0.964 ± 0.016 | 0.968 ± 0.021 | 0.971 ± 0.015 | 0.955 ± 0.022 | 0.956 ± 0.018 |
Capitate | 0.969 ± 0.014 | 0.969 ± 0.011 | 0.976 ± 0.016 | 0.977 ± 0.017 | 0.963 ± 0.017 | 0.963 ± 0.017 |
Trapezium and Trapezoid | 0.960 ± 0.027 | 0.942 ± 0.035 | 0.953 ± 0.026 | 0.924 ± 0.048 | 0.942 ± 0.024 | 0.919 ± 0.044 |
Factors | Subfactors | Model Estimates 1 | |||
---|---|---|---|---|---|
Mean Value | 99% Confidence Interval | ||||
SL gap width | Gender | male | 1.52 | 1.41 | 1.62 |
female | 1.62 | 1.38 | 1.86 | ||
Side | right | 1.88 | 1.75 | 2.02 | |
left | 1.26 | 1.12 | 1.40 | ||
LT gap width | Gender | male | 1.28 | 1.19 | 1.37 |
female | 1.42 | 1.22 | 1.63 | ||
Side | right | 1.37 | 1.25 | 1.49 | |
left | 1.33 | 1.22 | 1.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radke, K.L.; Wollschläger, L.M.; Nebelung, S.; Abrar, D.B.; Schleich, C.; Boschheidgen, M.; Frenken, M.; Schock, J.; Klee, D.; Frahm, J.; et al. Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease. Diagnostics 2021, 11, 1077. https://doi.org/10.3390/diagnostics11061077
Radke KL, Wollschläger LM, Nebelung S, Abrar DB, Schleich C, Boschheidgen M, Frenken M, Schock J, Klee D, Frahm J, et al. Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease. Diagnostics. 2021; 11(6):1077. https://doi.org/10.3390/diagnostics11061077
Chicago/Turabian StyleRadke, Karl Ludger, Lena Marie Wollschläger, Sven Nebelung, Daniel Benjamin Abrar, Christoph Schleich, Matthias Boschheidgen, Miriam Frenken, Justus Schock, Dirk Klee, Jens Frahm, and et al. 2021. "Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease" Diagnostics 11, no. 6: 1077. https://doi.org/10.3390/diagnostics11061077
APA StyleRadke, K. L., Wollschläger, L. M., Nebelung, S., Abrar, D. B., Schleich, C., Boschheidgen, M., Frenken, M., Schock, J., Klee, D., Frahm, J., Antoch, G., Thelen, S., Wittsack, H. -J., & Müller-Lutz, A. (2021). Deep Learning-Based Post-Processing of Real-Time MRI to Assess and Quantify Dynamic Wrist Movement in Health and Disease. Diagnostics, 11(6), 1077. https://doi.org/10.3390/diagnostics11061077