Correlation of Native Liver Parenchyma T1 and T2 Relaxation Times and Liver Synthetic Function Tests: A Pilot Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Imaging Protocol
2.3. Study Sequences
2.4. Image Analysis
2.4.1. T1 and T2 Relaxometry
2.4.2. Laboratory Values
2.4.3. Statistical Analysis
3. Results
3.1. Correlation Analyses
3.1.1. Albumin
3.1.2. Bilirubin
3.1.3. INR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heye, T.; Yang, S.R.; Bock, M.; Brost, S.; Weigand, K.; Longerich, T.; Kauczor, H.U.; Hosch, W. MR relaxometry of the liver: Significant elevation of T1 relaxation time in patients with liver cirrhosis. Eur. Radiol. 2012, 22, 1224–1232. [Google Scholar] [CrossRef]
- Hinrichs, H.; Hinrichs, J.B.; Gutberlet, M.; Lenzen, H.; Raatschen, H.J.; Wacker, F.; Ringe, K.I. Functional gadoxetate disodium-enhanced MRI in patients with primary sclerosing cholangitis (PSC). Eur. Radiol. 2016, 26, 1116–1124. [Google Scholar] [CrossRef]
- Cassinotto, C.; Feldis, M.; Vergniol, J.; Mouries, A.; Cochet, H.; Lapuyade, B.; Hocquelet, A.; Juanola, E.; Foucher, J.; Laurent, F.; et al. MR relaxometry in chronic liver diseases: Comparison of T1 mapping, T2 mapping, and diffusion-weighted imaging for assessing cirrhosis diagnosis and severity. Eur. J. Radiol. 2015, 84, 1459–1465. [Google Scholar] [CrossRef]
- Ryeom, H.K.; Kim, S.H.; Kim, J.Y.; Kim, H.J.; Lee, J.M.; Chang, Y.M.; Kim, Y.S.; Kang, D.S. Quantitative evaluation of liver function with MRI Using Gd-EOB-DTPA. Korean J. Radiol. 2004, 5, 231–239. [Google Scholar] [CrossRef] [Green Version]
- Katsube, T.; Okada, M.; Kumano, S.; Hori, M.; Imaoka, I.; Ishii, K.; Kudo, M.; Kitagaki, H.; Murakami, T. Estimation of liver function using T1 mapping on Gd-EOB-DTPA-enhanced magnetic resonance imaging. Investig. Radiol. 2011, 46, 277–283. [Google Scholar] [CrossRef]
- Hoad, C.L.; Palaniyappan, N.; Kaye, P.; Chernova, Y.; James, M.W.; Costigan, C.; Austin, A.; Marciani, L.; Gowland, P.A.; Guha, I.N.; et al. A study of T(1) relaxation time as a measure of liver fibrosis and the influence of confounding histological factors. NMR Biomed. 2015, 28, 706–714. [Google Scholar] [CrossRef]
- Banerjee, R.; Pavlides, M.; Tunnicliffe, E.M.; Piechnik, S.K.; Sarania, N.; Philips, R.; Collier, J.D.; Booth, J.C.; Schneider, J.E.; Wang, L.M.; et al. Multiparametric magnetic resonance for the non-invasive diagnosis of liver disease. J. Hepatol. 2014, 60, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Pavlides, M.; Banerjee, R.; Sellwood, J.; Kelly, C.J.; Robson, M.D.; Booth, J.C.; Collier, J.; Neubauer, S.; Barnes, E. Multiparametric magnetic resonance imaging predicts clinical outcomes in patients with chronic liver disease. J. Hepatol. 2016, 64, 308–315. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Yang, Q.; Yu, T.; Chen, X.; Huang, J.; Tan, C.; Liang, B.; Guo, H. Comparison of T2, T1rho, and diffusion metrics in assessment of liver fibrosis in rats. J. Magn. Reson. Imaging 2017, 45, 741–750. [Google Scholar] [CrossRef]
- Hueper, K.; Lang, H.; Hartleben, B.; Gutberlet, M.; Derlin, T.; Getzin, T.; Chen, R.; Abou-Rebyeh, H.; Lehner, F.; Meier, M.; et al. Assessment of liver ischemia reperfusion injury in mice using hepatic T2 mapping: Comparison with histopathology. J. Magn. Reson. Imaging 2018, 48, 1586–1594. [Google Scholar] [CrossRef]
- Guimaraes, A.R.; Siqueira, L.; Uppal, R.; Alford, J.; Fuchs, B.C.; Yamada, S.; Tanabe, K.; Chung, R.T.; Lauwers, G.; Chew, M.L.; et al. T2 relaxation time is related to liver fibrosis severity. Quant. Imaging Med. Surg. 2016, 6, 103–114. [Google Scholar] [CrossRef] [Green Version]
- Audebert, C.; Vignon-Clementel, I.E. Model and methods to assess hepatic function from indocyanine green fluorescence dynamical measurements of liver tissue. Eur. J. Pharm. Sci. 2018, 115, 304–319. [Google Scholar] [CrossRef] [Green Version]
- Stockmann, M.; Lock, J.F.; Malinowski, M.; Niehues, S.M.; Seehofer, D.; Neuhaus, P. The LiMAx test: A new liver function test for predicting postoperative outcome in liver surgery. HPB 2010, 12, 139–146. [Google Scholar] [CrossRef] [Green Version]
- Fahlenkamp, U.L.; Engel, G.; Adams, L.C.; Boker, S.M.; Huynh Anh, M.; Wagner, M.; Hamm, B.; Makowski, M.R. Improved visualisation of hepatic metastases in gadoxetate disodium-enhanced MRI: Potential of contrast-optimised (phase-sensitive) inversion recovery imaging. PLoS ONE 2019, 14, e0213408. [Google Scholar] [CrossRef] [PubMed]
- Baessler, B.; Schaarschmidt, F.; Stehning, C.; Schnackenburg, B.; Maintz, D.; Bunck, A.C. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers. Eur. J. Radiol. 2015, 84, 2161–2170. [Google Scholar] [CrossRef]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
- Pugh, R.N.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef] [PubMed]
- Foucher, J.; Chanteloup, E.; Vergniol, J.; Castera, L.; Le Bail, B.; Adhoute, X.; Bertet, J.; Couzigou, P.; de Ledinghen, V. Diagnosis of cirrhosis by transient elastography (FibroScan): A prospective study. Gut 2006, 55, 403–408. [Google Scholar] [CrossRef]
- Hashimoto, K.; Murakami, T.; Dono, K.; Hori, M.; Kim, T.; Kudo, M.; Marubashi, S.; Miyamoto, A.; Takeda, Y.; Nagano, H.; et al. Assessment of the severity of liver disease and fibrotic change: The usefulness of hepatic CT perfusion imaging. Oncol. Rep. 2006, 16, 677–683. [Google Scholar] [CrossRef] [PubMed]
- Trefts, E.; Gannon, M.; Wasserman, D.H. The liver. Curr. Biol. 2017, 27, R1147–R1151. [Google Scholar] [CrossRef] [PubMed]
- Okubo, H.; Ando, H.; Sorin, Y.; Nakadera, E.; Fukada, H.; Morishige, J.; Miyazaki, A.; Ikejima, K. Gadoxetic acid-enhanced magnetic resonance imaging to predict paritaprevir-induced hyperbilirubinemia during treatment of hepatitis C. PLoS ONE 2018, 13, e0196747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonhardt, M.; Keiser, M.; Oswald, S.; Kuhn, J.; Jia, J.; Grube, M.; Kroemer, H.K.; Siegmund, W.; Weitschies, W. Hepatic uptake of the magnetic resonance imaging contrast agent Gd-EOB-DTPA: Role of human organic anion transporters. Drug Metab. Dispos. 2010, 38, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Konig, J.; Leier, I.; Buchholz, U.; Keppler, D. Hepatic uptake of bilirubin and its conjugates by the human organic anion transporter SLC21A6. J. Biol. Chem. 2001, 276, 9626–9630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Entire Study Cohort | n = 94 | ||
Referral to MRI due to… | |||
Extrahepatic tumor | n = 57 | ||
of which | |||
Breast | n = 22 | ||
Neuroendocrine | n = 10 | ||
Thyroid gland | n = 1 | ||
Colorectal | n = 9 | ||
Lung | n = 1 | ||
Skin | n = 6 | ||
Cervix uteri | n = 1 | ||
Prostate | n = 1 | ||
Stomach | n = 1 | ||
Kidney | n = 2 | ||
Testes | n = 2 | ||
Pancreas | n = 1 | ||
Cirrhosis | n = 20 | ||
Cholangiocellular carcinoma | n = 6 | ||
Diverse indications | n = 11 | ||
of which | |||
PSC | n = 3 | ||
Liver lesion of unknown entity | n = 5 | ||
Choledocholithiasis, suspected underlying malignancy | n = 2 | ||
Liver abscess, suspected underlying malignancy | n = 1 |
Sequence | T1 Map (MOLLI) | T2 Map (True FISP) |
---|---|---|
Scan plane | Axial | Axial |
Voxel size (mm) | 2.4 × 1.6 × 6.0 | 2.6 × 2.1 × 6.0 |
Number of slices | 3 | 3 |
Slice thickness (mm) | 6 | 6 |
TR/TE (ms) | 912/1.08 | 227.29/1.13 |
Averages | 1 | 1 |
FoV (mm) | 320 | 319 |
Flip angle (°) | 35 | 70 |
Bandwidth (Hz/Pixel) | 1028 | 930 |
Fat saturation | None | None |
Number of inversions | 3 | - |
MOLLI TI start (ms) | 90 | - |
MOLLI TI increment (ms) | 80 | - |
MOLLI trigger delay (ms) | 160 | - |
Number of T2 preparations | - | 3 |
Echo spacing (ms) | - | 2.5 |
Parameter | N | Mean | SD | Lower Limit | Upper Limit |
---|---|---|---|---|---|
Age | 94 | 56.3 | 14.8 | 19 | 80 |
Albumin (g/L) | 60 | 40.3 | 5.5 | 23.0 | 48.4 |
INR | 65 | 1.2 | 0.4 | 0.8 | 3.0 |
Bilirubin (mg/dL) | 78 | 0.9 | 1.9 | 0.2 | 14.0 |
T2 value (ms) | 94 | 55.9 | 6.1 | 41.7 | 84.0 |
T1 value (ms) | 94 | 563.3 | 74.9 | 319.7 | 819.0 |
T1HBP value (ms) | 94 | 218 | 73.3 | 138 | 460 |
Parameter | N | Correlation T2 | Correlation T1 | Correlation T1HBP | |||||
---|---|---|---|---|---|---|---|---|---|
r | p | r | p | r | p | ||||
Albumin | Cirrhotic | Within 10 days | 9 | −0.829 | 0.006 | −0.918 | <0.001 | −0.942 | <0.001 |
Any time point | 18 | −0.585 | 0.011 | −0.574 | 0.013 | −0.862 | <0.001 | ||
Non- cirrhotic | Within 10 days | 24 | −0.288 | 0.172 | −0.437 | 0.033 | −0.319 | 0.129 | |
Any time point | 42 | −0.202 | 0.199 | −0.412 | 0.007 | −0.312 | 0.044 | ||
Bilirubin | Cirrhotic | Within 10 days | 9 | 0.563 | 0.115 | 0.840 | 0.005 | 0.808 | 0.008 |
Any time point | 19 | 0.524 | 0.021 | 0.576 | 0.010 | 0.629 | 0.004 | ||
Non- cirrhotic | Within 10 days | 30 | 0.157 | 0.407 | 0.308 | 0.098 | 0.409 | 0.025 | |
Any time point | 59 | 0.084 | 0.527 | 0.131 | 0.324 | 0.387 | 0.002 |
INR | N | Mean T2 Value | p | Mean T1 Value | p | Mean T1HBP Value | p | |
---|---|---|---|---|---|---|---|---|
Cirrhotic | Normal | 3 | 54.67 | 0.167 | 559.00 | 0.262 | 208.56 | 0.048 |
Path. | 6 | 63.33 | 636.78 | 353.44 | ||||
Non- cirrhotic | Normal | 26 | 56.04 | 0.071 | 556.26 | 0.536 | 204.24 | 0.026 |
Path. | 4 | 50.17 | 548.75 | 276.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fahlenkamp, U.L.; Kunkel, J.; Ziegeler, K.; Neumann, K.; Adams, L.C.; Engel, G.; Böker, S.M.; Makowski, M.R. Correlation of Native Liver Parenchyma T1 and T2 Relaxation Times and Liver Synthetic Function Tests: A Pilot Study. Diagnostics 2021, 11, 1125. https://doi.org/10.3390/diagnostics11061125
Fahlenkamp UL, Kunkel J, Ziegeler K, Neumann K, Adams LC, Engel G, Böker SM, Makowski MR. Correlation of Native Liver Parenchyma T1 and T2 Relaxation Times and Liver Synthetic Function Tests: A Pilot Study. Diagnostics. 2021; 11(6):1125. https://doi.org/10.3390/diagnostics11061125
Chicago/Turabian StyleFahlenkamp, Ute Lina, Jan Kunkel, Katharina Ziegeler, Konrad Neumann, Lisa Christine Adams, Günther Engel, Sarah Maria Böker, and Marcus Richard Makowski. 2021. "Correlation of Native Liver Parenchyma T1 and T2 Relaxation Times and Liver Synthetic Function Tests: A Pilot Study" Diagnostics 11, no. 6: 1125. https://doi.org/10.3390/diagnostics11061125
APA StyleFahlenkamp, U. L., Kunkel, J., Ziegeler, K., Neumann, K., Adams, L. C., Engel, G., Böker, S. M., & Makowski, M. R. (2021). Correlation of Native Liver Parenchyma T1 and T2 Relaxation Times and Liver Synthetic Function Tests: A Pilot Study. Diagnostics, 11(6), 1125. https://doi.org/10.3390/diagnostics11061125