The Effect of HbA1c Variability as a Risk Measure for Microangiopathy in Type 1 Diabetes Mellitus
Abstract
:1. Introduction
2. Subjects
2.1. Setting
2.2. Design
3. Material and Methods
3.1. Laboratory Analysis
3.2. Variability of HbA1c Calculation
- The standard deviation of the mean HbA1c (SD-HbA1c).
- The average real variability (ARV-HbA1c) is the average of the absolute differences between consecutive HbA1c measurements.
- The coefficient of variation of HbA1c, (CV-HbA1c) applying the following formula, [12] CV-HbA1c = SD-HbA1c/Mean HbA1c
- The variability independent of the mean (VIM-HbA1c) is a transformation of the standard deviation, which is not correlated with mean HbA1c and is calculated as follows [26]:
3.3. Statistical Methods
4. Results
4.1. Demographic Variables of Sample Size
4.2. Univariate Analysis of Diabetic Retinopathy
4.3. Univariate Study of the Severity of Diabetic Retinopathy
4.4. Microalbuminuria Univariate Analysis
4.5. Multivariate Study of Diabetic Retinopathy
4.6. Multivariate Study of Severity of Diabetic Retinopathy
4.7. Survival Analysis of Microalbuminuria
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef]
- Atlas de la Diabetes de la FID, Séptima Edición. International Diabetes Federation, IDF 2015. ISBN 978-2-930229-81-2. Available online: www.idf.org/e-library/epidemiology-research/diabetes-atlas.html 2020 (accessed on 2 May 2020).
- American Diabetes Assoiciation. Classification and Diagnosis of Diabetes, Standards of Medical Care in Diabetes-2018. Diabetes Care 2018, 41, S13–S27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Vision Loss Expert Group of the Global Burden of Disease Study. Global causes of blindness and distance vision impairment 1990-2020, a systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yau, J.W.; Rogers, S.L.; Kawasaki, R.; Lamoureux, E.L.; Kowalski, J.W.; Bek, T.; Chen, S.-J.; Dekker, J.M.; Fletcher, A.; Grauslund, J.; et al. Meta-Analysis for Eye Disease (META-EYE) Study Group. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 2012, 35, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Segade, S.; Rodríguez, J.; López, J.M.; Casanueva, F.F.; Camiña, F. Intrapersonal HbA1c variability and the risk of progression of nephropathy in patients with Type 2 diabetes. Diabet. Med. 2012, 29, 1562–1566. [Google Scholar] [CrossRef] [PubMed]
- Kilpatrick, E.; Rigby, A.S.; Atkin, S.L. The effect of glucose variability on the risk of microvascular complications in type 1 diabetes. Diabetes Care 2006, 29, 1486–1490. [Google Scholar] [CrossRef] [Green Version]
- Bragd, J.; Adamson, U.; Bäcklund, L.B.; Lins, P.; Moberg, E.; Oskarsson, P. Can glycaemic variability, as calculated from blood glucose self- monitoring, predict the development of complications in type1 diabetes over a decade? Diabetes Metab. 2008, 34, 612–616. [Google Scholar] [CrossRef]
- Sartore, G.; Chilelli, N.C.; Burlina, S.; Lapolla, A. Association between glucose variability as assessed by continuous glucose monitoring (CGM) and diabetic retinopathy in type 1 and type 2 diabetes. Acta Diabetol. 2013, 50, 437–442. [Google Scholar] [CrossRef]
- Kilpatrick, E.S.; Rigby, A.S.; Atkin, S.L. A1C variability and the risk of microvascular complicationsin type 1 diabetes, data from the Diabetes Control and Complications Trial. Diabetes Care 2008, 31, 2198–2202. [Google Scholar] [CrossRef] [Green Version]
- Waden, J.; Forsblom, C.; Thorn, L.M.; Gordin, D.; Saraheimo, M.; Groop, P.H. Finnish Diabetic Nephropathy Study Group. A1C variability predicts incident cardiovascular events, microalbuminuria, and overt diabetic nephropathy in patients with type 1 diabetes. Diabetes 2009, 58, 2649–2655. [Google Scholar] [CrossRef] [Green Version]
- Marcovecchio, M.L.; Dalton, R.N.; Chiarelli, F.; Dunger, P.D. A1C variability as an independent risk factor for microalbuminuria in young peoplewith type 1 diabetes. Diabetes Care 2011, 34, 1011–1013. [Google Scholar] [CrossRef] [Green Version]
- Hietala, K.; Wadén, J.; Forsblom, C.; Harjutsalo, V.; Kytö, J.; Summanen, P.; Groop, P.-H.; FinnDiane Study Group. HbA1c variability is associated with an increased risk of retinopathy requiring laser treatment in type 1 diabetes. Diabetologia 2013, 56, 737–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nazim, J.; Fendler, W.; Starzyk, J. Metabolic control and its variability are major risk factors for microalbuminuria in children with type 1 diabetes. Endokrynol. Pol. 2014, 65, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Hermann, J.M.; Hammes, H.-P.; Rami-Merhar, B.; Rosenbauer, J.; Schütt, M.; Siegel, E.; Holl, R.W.; DPV Initiative the German BMBF Competence Network Diabetes Mellitus. HbA1c variability as an independent risk factor for diabetic retinopathy in type 1 diabetes, A german/austrian multicenter analysis on 35,891 patients. PLoS ONE 2014, 9, e91137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreur, V.; van Asten, F.; Ng, H.; Weeda, J.; Groenewoud, J.M.M.; Tack, C.J.; Hoyng, C.B.; De Jong, E.K.; Klaver, C.C.; Klevering, B.J. Risk factors for development and progression of diabetic retinopathy in Dutch patients with type 1 diabetes mellitus. Acta Ophthalmol. 2018, 96, 459–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rothwell, P.M.; Howard, S.C.; Dolan, E.; O’Brien, E.; Dobson, J.E.; Dahlöf, B.; Sever, P.S.; Poulter, N.R. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet 2010, 375, 895–905. [Google Scholar] [CrossRef]
- Mena, L.; Pintos, S.; Queipo, N.V.; Aizpurua, J.A.; Maestre, G.; Sulbaran, T. A reliable index for the prognostic significance of blood pressure variability. J. Hypertens. 2005, 23, 505–511. [Google Scholar] [CrossRef] [Green Version]
- Romero-Aroca, P.; De La Riva-Fernandez, S.; Valls-Mateu, A.; Àlamo, R.; Moreno-Ribas, A.; Soler, N. Changes observed in diabetic retinopathy. Eight year follow up of a Spanish population. Br. J. Ophthalmol. 2016, 100, 1366–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romero-Aroca, P.; Navarro-Gil, R.; Valls-Mateu, A.; Àlamo, R.; Moreno-Ribas, A.; Soler, N. Differences in incidence of diabetic retinopathy between type 1 and 2 diabetes mellitus, a nine-year follow-up study. Br. J. Ophthalmol. 2017, 101, 1346–1351. [Google Scholar] [CrossRef] [Green Version]
- Cavallerano, J.D.; Aiello, L.P.; Cavallerano, A.A.; Katalinic, P.; Hock, K.; Kirby, R. Nonmydriatic digital imaging alternative for annual retinal examination in persons with previously documented no or mild diabetic retinopathy. Am. J. Ophthalmol. 2005, 140, 667–673. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, C.P.; Ferris, F.L., III; Klein, R.E.; Lee, P.P.; Agardh, C.D.; Davis, M.; Dills, D.; Kampik, A.; Pararajasegaram, R.; Verdaguer, J.T. Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 2003, 110, 1677–1682. [Google Scholar] [CrossRef]
- American Diabetes Association; European Association for the Study of Diabetes; International Federation of Clinical Chemistry and Laboratory Medicine; International Diabetes Federation. Consensus statement on the worldwide standardization of the HbA1c measurement. Diabetologia 2007, 50, 2042–2043. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Diabetes Policy Group. A desktop guide to type I (insulin-dependent) diabetes mellitus. 1998–1999. Guidelines for Diabetes care. Diabet. Med. 1999, 16, 253–266. [Google Scholar] [CrossRef]
- American Diabetes Association. Glycemic targets, standards of medical care in diabetes 2020. Diabetes Care 2020, 43, S66–S76. [Google Scholar] [CrossRef]
- Rothwell, P.M.; Howard, S.C.; Dolan, E.; O’Brien, E.; Dobson, J.E.; Dahlöf, B.; Poulter, N.R.; Sever, P.S. Effects of b blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010, 9, 469–480. [Google Scholar] [CrossRef]
- Diabetes Control and Complications Trial (DCCT)/Epidemiology of Diabetes Interventions and Complications (EDIC) Research Group. Effect of intensive diabetes therapy on the progression of diabetic retinopathy in patients with type 1 diabetes, 18 years of follow-up in the DCCT/EDIC. Diabetes 2015, 64, 631–642. [Google Scholar] [CrossRef] [Green Version]
- Takao, T.; Suka, M.; Yanagisawa, H.; Matsuyama, Y.; Iwamoto, Y. Predictive ability of visit-to-visit variability in HbA1c and systolic blood pressure for the development of microalbuminuria and retinopathy in people with type 2 diabetes. Diabetes Res. Clin. Pract. 2017, 128, 15–23. [Google Scholar] [CrossRef]
- Romero-Aroca, P.; Baget-Bernaldiz, M.; Navarro-Gil, R.; Moreno-Ribas, A.; Valls-Mateu, A.; Àlamo, R.S.; La Puente, J.F.B.-D.; Mundet-Tuduri, X. Glomerular Filtration Rate and/or Ratio of Urine Albumin to Creatinine as Markers for Diabetic Retinopathy, A Ten-Year Follow-Up Study. J. Diabetes Res. 2018, 2018, 5637130. [Google Scholar] [CrossRef]
- Romero-Aroca, P.; Baget-Bernaldiz, M.; Reyes-Torres, J.; Fernandez-Ballart, J.; Plana-Gil, N.; Mendez-Marin, I.; Ríos, A.P. Relationship between diabetic retinopathy, microalbuminuria and overt nephropathy, and twenty-year incidence follow-up of a sample of type 1 diabetic patients. J. Diabetes Complicat. 2012, 26, 506–512. [Google Scholar] [CrossRef] [PubMed]
Variable | Without Diabetic Retinopathy | With Diabetic Retinopathy | Significance |
---|---|---|---|
Current age (years) | 35.87 ± 10.22 | 42.47 ± 8.76 | p = 0.026 |
Male (%) | 134 (51.53) | 59 (55.66) | p = 0.181 |
Arterial hypertension (%) | 13 (3.55) | 27 (21.58) | p < 0.001 |
DM duration (years) | 15.17 ± 8.3 | 20.92 ± 9.51 | p = 0.034 |
LDL cholesterol (mg/dL) | 101.33 ± 27.71 | 103.83 ± 25.48 | p = 0.674 |
HDL cholesterol (mg/dL) | 75.27 ± 18.04 | 60.9 ± 18.93 | p = 0.386 |
Triglycerides (mg/dL) | 108.73 ± 14.25 | 104.02 ± 15.35 | p = 0.213 |
Microalbuminuria (mg/g) | 17.49 ± 11.26 | 31.15 ± 14.27 | p = 0.151 |
eGFR (mL/min/1.73 m2) | 106.75 ± 15.77 | 96.11 ± 18.67 | p = 0.003 |
Mean-HbA1c (%) mmol/mol | 7.56 ± 0.88 59.12 ± 13.87 | 8.86 ± 1.44 73.33 ± 7.75 | p < 0.001 |
Variability HbA1c data | |||
SD-HbA1c | 0.45 ± 0.36 | 1.18 ± 0.67 | p < 0.001 |
CV-HbA1c | 0.058 ± 0.047 | 0.112 ± 0.079 | p < 0.001 |
ARV-HbA1c | 0.78 ± 0.59 | 2.09 ± 0.98 | p < 0.001 |
VIM-HbA1c | 0.38 ± 0.07 | 0.41 ± 0.06 | p = 0.037 |
Mild DR | Moderate DR | Severe DR | Proliferative DR | Significance | |
---|---|---|---|---|---|
Current age (years) | 37.86 ± 10.19 | 42.55 ± 9.32 | 42.56 ± 8.92 | 46.01 ± 7.91 | p < 0.001 |
Arterial hypertension (%) | 17 (24.28) | 6 (30) | 4 (50) | 4 (80) | p < 0.001 |
Diabetes duration (years) | 17.24 ± 8.26 | 18.24 ± 8.75 | 20.62 ± 9.6 | 27.8 ± 8.37 | p < 0.001 |
Mean-HbA1c (%) (mmol/mol) | 8.68 ± 1.43 71.36 ± 7.86 | 9.16 ± 1.22 76.61 ± 10.16 | 9.86 ± 1.25 84.26 ± 9.83 | 10.36 ± 1.45 89.72 ± 7.65 | p < 0.001 |
Study of variability | |||||
SD-HbA1c | 1.05 ± 0.5 | 1.37 ± 0.79 | 1.82 ± 0.85 | 1.91 ± 1.18 | p < 0.001 |
CV-HbA1c | 0.101 ± 0.069 | 0.126 ± 0.087 | 0.175 ± 0.107 | 0.186 ± 0.117 | p < 0.001 |
VIM-HbA1c | 0.40 ± 0.06 | 0.41 ± 0.04 | 0.47 ± 0.05 | 0.51 ± 0.04 | p < 0.001 |
ARV-HbA1c | 1.86 ± 0.92 | 2.51 ± 0.92 | 2.75 ± 1.12 | 2.66 ± 1.04 | p < 0.001 |
Study of microalbuminuria | |||||
Microalbuminuria (mg/g) | 37.2 ± 19.9 | 16.8 ± 18.11 | 18.23 ± 17.62 | 37.92 ± 17.11 | p = 0.739 |
Variable | Without Microalbuminuria | With Microalbuminuria | Significance |
---|---|---|---|
Current age (years) | 36.6 ± 10.25 | 41.58 ± 8.76 | p = 0.034 |
Male (%) | 152 (51.87) | 41 (56.16) | p = 0.102 |
Arterial hypertension (%) | 25 (8.53) | 15 (20.54) | p < 0.001 |
DM duration (years) | 15.96 ± 8.76 | 20.41 ± 9.18 | p = 0.029 |
LDL cholesterol (mg/dL) | 102.23 ± 26.55 | 101.32 ± 29.26 | p = 0.552 |
HDL cholesterol (mg/dL) | 58.69 ± 17.04 | 61.36 ± 19.13 | p = 0.255 |
Triglycerides (mg/dL) | 106.53 ± 13.68 | 110.73 ± 16.27 | p = 0.509 |
eGFR (mL/min/1.73 m2) | 105.33 ± 16.16 | 97.16 ± 20.16 | p = 0.001 |
Diabetic retinopathy (%) | 50 (17.1) | 56 (76.7) | p = 0.003 |
Mean-HbA1c (%) mmol/mol | 7.76 ± 1.13 61.85 ± 10.92 | 8.79 ± 1.36 66.01 ± 8.63 | p = 0.003 |
Variability HbA1c data | |||
SD-HbA1c | 0.54 ± 0.43 | 1.15 ± 0.8 | p < 0.001 |
CV-HbA1c | 0.062 ± 0.048 | 0.117 ± 0.091 | p < 0.001 |
ARV-HbA1c | 0.95 ± 0.74 | 2.01 ± 1.13 | p < 0.001 |
VIM-HbA1c | 0.38 ± 0.07 | 0.41 ± 0.07 | p = 0.750 |
Diabetic Retinopathy | ||
Variable | Hazard Ratio (95% CI) | Significance |
Current age (years) | 1.955 (1.57–2.528) | p < 0.001 |
Arterial hypertension | 1.149 (0.646–2.044) | p = 0.635 |
eGFR (mL/min/1.73 m2) | 0.999 (0.988–1.011) | p = 0.913 |
Mean-HbA1c | 3.502 (1.081–11.349) | p = 0.037 |
SD-HbA1c | 1.966 (1.125–3.434) | p = 0.018 |
CV-HbA1c | 1.448 (0.897–2.456) | p = 0.169 |
ARV HbA1c | 2.171 (1.326–3.555) | p = 0.002 |
VIM-HbA1c | 0.672 (0.397–1.130) | p = 0.134 |
Diabetic retinopathy severity * | ||
Variable | Hazard ratio (95% CI) | Significance |
Current age (years) | 1.159 (1.057–2.991) | p = 0.003 |
Arterial hypertension | 1.479 (0.842–2.597) | p = 0.173 |
eGFR (mL/min/1.73 m2) | 1.001 (0.989–1.012) | p = 0.928 |
Mean-HbA1c | 1.321 (1.108–1.575) | p = 0.002 |
SD-HbA1c | 1.744 (1.089–3.385) | p < 0.001 |
CV-HbA1c | 1.390 (1.076–1.796) | p = 0.012 |
ARV- HbA1c | 0.514 (0.002–1.893) | p = 0.809 |
VIM-HbA1c | 0.100 (0.005–1.912) | p = 0.126 |
Microalbuminuria | ||
Variable | Hazard ratio (95% CI) | Significance |
Current age (years) | 1.957 (1.357–2.787) | p = 0.008 |
Arterial hypertension | 1.049 (0.412–1.735) | p = 0.892 |
eGFR (mL/min/1.73 m2) | 1.002 (0.760–1.014) | p = 0.734 |
Mean-HbA1c | 1.472 (1.029–1.572) | p = 0.026 |
SD-HbA1c | 1.377 (1.006–3.554) | p = 0.028 |
CV-HbA1c | 1.025 (0.461–2.278) | p = 0.952 |
ARV HbA1c | 1.179 (1.020–1.864) | p = 0.036 |
VIM-HbA1c | 0.264 (0.208–4.252) | p = 0.449 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Romero-Aroca, P.; Navarro-Gil, R.; Feliu, A.; Valls, A.; Moreno, A.; Baget-Bernaldiz, M. The Effect of HbA1c Variability as a Risk Measure for Microangiopathy in Type 1 Diabetes Mellitus. Diagnostics 2021, 11, 1151. https://doi.org/10.3390/diagnostics11071151
Romero-Aroca P, Navarro-Gil R, Feliu A, Valls A, Moreno A, Baget-Bernaldiz M. The Effect of HbA1c Variability as a Risk Measure for Microangiopathy in Type 1 Diabetes Mellitus. Diagnostics. 2021; 11(7):1151. https://doi.org/10.3390/diagnostics11071151
Chicago/Turabian StyleRomero-Aroca, Pedro, Raul Navarro-Gil, Albert Feliu, Aida Valls, Antonio Moreno, and Marc Baget-Bernaldiz. 2021. "The Effect of HbA1c Variability as a Risk Measure for Microangiopathy in Type 1 Diabetes Mellitus" Diagnostics 11, no. 7: 1151. https://doi.org/10.3390/diagnostics11071151
APA StyleRomero-Aroca, P., Navarro-Gil, R., Feliu, A., Valls, A., Moreno, A., & Baget-Bernaldiz, M. (2021). The Effect of HbA1c Variability as a Risk Measure for Microangiopathy in Type 1 Diabetes Mellitus. Diagnostics, 11(7), 1151. https://doi.org/10.3390/diagnostics11071151