Biomechanical Changes in Gait Patterns of Patients with Grade II Medial Gonarthritis
Abstract
:1. Introduction
2. Aim of Research
3. Materials and Methods
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Prieto-Alhambra, D.; Judge, A.; Javaid, M.K.; Cooper, C.; Diez-Perez, A.; Arden, N.K. Incidence and risk factors for clinically diagnosed knee, hip and hand osteoarthritis: Influences of age, gender and osteoarthritis affecting other joints. Ann. Rheum. Dis. 2014, 73, 1659–1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zorgregistraties, N. Zorg Door De Huisarts; Jaarcijfers 2016 Entrendcijfers 2011–2016. 2017. Available online: https://www.volksgezondheidenzorg.info/onderwerp/artrose/cijfers-context/huidige-situatie (accessed on 7 April 2019).
- Hunter, D.J.; Bierma-Zeinstra, S. Osteoarthritis. Lancet 2019, 393, 1745–1759. [Google Scholar] [CrossRef]
- Vos, T.; Allen, C.; Arora, M.; Barber, R.M.; Bhutta, Z.A.; Brown, A.; Carter, A.; Casey, D.C.; Charlson, F.J.; Chen, A.Z.; et al. Global, regional, and national incidence, preva-lence, and years lived with disability for 310 diseases and injuries, 1990–2015: A systematic analysis for the global burden of disease study 2015. Lancet 2016, 388, 1545–1602. [Google Scholar] [CrossRef] [Green Version]
- Losina, E.; Weinstein, A.M.; Reichmann, W.M.; Burbine, S.A.; Solomon, D.H.; Daigle, M.E.; Rome, B.N.; Chen, S.P.; Hunter, D.J.; Suter, L.G.; et al. Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res. 2013, 65, 703–711. [Google Scholar] [CrossRef] [PubMed]
- Abramson, S.B.; Attur, M. Developments in the scientific understanding of osteoarthritis. Arthritis Res. Ther. 2009, 11, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fraysse, F.; Arnold, J.; Thewlis, D. A method for concise reporting of joint reaction forces orientation during gait. J. Biomech. 2016, 49, 3538–3542. [Google Scholar] [CrossRef]
- Mina, C.; Garrett, W.E., Jr.; Pietrobon, R.; Glisson, R.; Higgins, L. High tibial osteotomy for unloading osteochondral defects in the medial compartment of the knee. Am. J. Sports Med. 2008, 36, 949–955. [Google Scholar] [CrossRef]
- Kutzner, I.; Heinlein, B.; Graichen, F.; Bender, A.; Rohlmann, A.; Halder, A.; Beier, A.; Bergmann, A. Loading of the knee joint during activities of daily living measured in vivo in five subjects. J. Biomech. 2010, 43, 2164–2173. [Google Scholar] [CrossRef]
- Jin, P.M.; Holloway, E.S. The young osteoarthritic knee: Dilemmas in management. BMC Med. 2013, 11, 14. [Google Scholar] [CrossRef] [Green Version]
- Morin, V.; Pailhe, R.; Duval, B.R.; Mader, R.; Cognault, J.; Rouchy, R.C.; Saragaglia, D. Gait analysis following medial opening-wedge high tibial osteotomy. Knee Surg. Sports Traumatol. Arthrosc. 2017, 26, 1838–1844. [Google Scholar] [CrossRef]
- Abid, M.; Mezghani, N.; Mitiche, A. Knee Joint Biomechanical Gait Data Classification for Knee Pathology Assessment: A Literature Review. Appl. Bionics Biomech. 2019, 2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkyn, T.R.; Hunt, M.A.; Jones, I.C.; Giffin, J.R.; Birmingham, T.B. Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion moment during early stance phase of gait: A tri-planar kinetic mechanism. J. Biomech. 2008, 41, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, H.G.; Cliquet Junior, A.; Zorzi, A.R.; Batista de Miranda, J. Biomechanical changes in gait of subjects with medial knee osteoarthritis. Acta Ortop. Bras. 2012, 20, 150–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simic, M.; Hinman, R.S.; Wrigley, T.V.; Bennell, K.L.; Michael, A.H. Gait Modification Strategies for Altering Medial Knee Joint Load: A Systematic Review. Arthritis Care Res. 2011, 63, 405–426. [Google Scholar] [CrossRef]
- Herman, B.V.; Giffin, J.R. High tibial osteotomy in the ACL-deficient knee with medial compartment osteoarthritis. J. Orthop. Traumatol. 2016, 17, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Gök, H.; Ergin, S.; Yavuzer, G. Kinetic and kinematic characteristics of gait in patients with medial knee arthrosis. Acta Orthop. Scand. 2002, 73, 647–652. [Google Scholar] [CrossRef]
- Loia, M.C.; Vanni, S.; Rosso, F.; Bonasia, D.E.; Bruzzone, M.; Dettoni, F.; Rossi, R. High Tibial Osteotomy in Varus Knees: Indications and Limits. Joints 2016, 4, 98–110. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.; Tian, F.; Zhang, Z.; Shi, W.; Lin, J.; Chen, L.; Yang, H. Reliability and concurrent validity of angle measurements in lower limb: EOS 3D goniometer versus 2D manual goniometer. J. Orthop. Transl. 2020, 24, 96–102. [Google Scholar] [CrossRef]
- Roos, E.M.; Lohmander, L.S. The Knee injury and Osteoarthritis Outcome Score (KOOS): From joint injury to osteoarthritis. Health Qual. Life Outcomes 2003, 1, 64. [Google Scholar] [CrossRef] [Green Version]
- Stoller, D.W. Magnetic Resonance Imaging in Orthopaedics & Sports Medicine; JB Lippincott: Philadelphia, PA, USA, 1993. [Google Scholar]
- Huskisson, E.C. Measurement of pain. Lancet 1974, 304, 1127–1131. [Google Scholar] [CrossRef]
- Brittberg, M.; Winalski, C.S. Evaluation of cartilage injuries and repair. J. Bone Jt. Surg. Am. 2003, 85 (Suppl. 2), 58–69. [Google Scholar] [CrossRef]
- Gabell, A.; Nayak, U.S.L. The Effect of Age on Variability in Gait. J. Gerontol. 1984, 39, 662–666. [Google Scholar] [CrossRef]
- Oberg, T.; Karsznia, A.; Oberg, K. Basic gait parameters: Reference data for normal subjects, 10–79 years of age. J. Rehabil. Res. Dev. 1993, 30, 210–223. [Google Scholar] [PubMed]
- Skvortsov, D.; Kaurkin, S.; Akhpashev, A.; Altukhova, A.; Troitskiy, A.; Zagorodniy, N. Gait Analysis and Knee Kinematics in Patients with Anterior Cruciate Ligament Rupture: Before and After Reconstruction. Appl. Sci. 2020, 10, 3378. [Google Scholar] [CrossRef]
- Creaby, M.W. It’s not all about the knee adduction moment: The role of the knee flexion moment in medial knee joint loading. Osteoarthr. Cartil. 2015, 23, 1038–1040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leporace, G.; Batista, L.A.; Muniz, A.M.; Zeitoune, G.; Luciano, T.; Metsavaht, L.; Nadal, J. Classification of gait kinematics of anterior cruciate ligament reconstructed subjects using principal component analysis and regressions modelling. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Diego, CA, USA, 28 August–1 September 2012; pp. 6514–6517. [Google Scholar] [CrossRef]
- Hurd, W.J.; Snyder-Mackler, L. Knee instability after acute ACL rupture affects movement patterns during the mid-stance phase of gait. J. Orthop. Res. 2007, 25, 1369–1377. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardinier, E.S.; Manal, K.; Buchanan, T.S.; Snyder-Mackler, L. Altered loading in the injured knee after ACL rupture. J. Orthop. Res. 2013, 31, 458–464. [Google Scholar] [CrossRef] [PubMed]
- Ogrodzka, K.; Niedźwiedzki, T.; Chwala, W. Evaluation of the kinematic parameters of normal-paced gait in subjects with gonarthrosis and the influence of gonarthrosis on the function of the ankle joint and hip joint. Acta Bioeng. Biomech. 2011, 13, 47–54. [Google Scholar] [PubMed]
- Wada, M.; Maezawa, Y.; Baba, H.; Shimada, S.; Sasaki, S.; Nose, Y. Relationships among bonemineral densities, static alignment and dynamic load in patients with medial compartment knee osteoarthritis. Rheumatology 2001, 40, 499–505. [Google Scholar] [CrossRef] [Green Version]
- Goldberg, S.R.; Stanhope, S.J. Sensitivity of joint moments to changes in walking speed and body-weight-support are interdependent and vary across joints. J. Biomech. 2013, 46, 1176–1183. [Google Scholar] [CrossRef] [Green Version]
Parameter | Males | Females |
---|---|---|
Number | 13 | 13 |
Age (years) | 49.7 (39–63) | 56 (46–67) |
Height (cm) | 173 (160–183) | 162.5 (153–168) |
Weight (kg) | 83.2 (62–123) | 85.5 (56–104) |
Body mass index | 27.5 (19.8–36.7) | 32.5 (19.8–44.4) |
Movement amplitude | 0°–120° (1.5°–130°) | 0°–116° (0°–125°) |
Extension deficit | 1.5° (0°–10°) | 0°–0.45° (0°–5°) |
Parameter | Affected | Intact | Control |
---|---|---|---|
GC (s) | 1.24 [1.1; 1.3] p = 0.047 | 1.245 [1.1; 1.3] p = 0.046 | 1.2 [1.1; 1.2] |
SDS (% of GC) | 49.7 [49.4; 50.4] p = 0.451 | 49.9 [49; 50.3] p = 0.528 | 50.1 [49.5; 50.3] |
Load (g) | 1.5 [1.8; 1.4] p = 0.101 | 1.6 [1.8; 1.5] p = 0.375 | 1.7 [1.8; 1.6] |
Affected | Intact | Control | |
---|---|---|---|
X1 (% of GC) | 4.1 [2.2; 5.3] p = 0.674 | 4.7 [3.7; 7.3] p = 0.288 | 4.3 [1.5; 5.2] |
A1 (°) | 19.2 [15.5; 23.5] p = 0.00005 | 19.3 [15.9; 23.9] p = 0.0004 | 27.4 [23.1; 29.4] |
X2 (% of GC) | 58.4 [56.9; 59.7] p = 0.001 | 58.8 [57.1; 60.3] p = 0.0001 | 56.0 [54.2; 57.6] |
A2 (°) | −12.5 [−14.6; 8.7] p = 0.329 | −10.2 [−12.6; −8.8] p = 0.842 | −10.5 [−13.4; −7.7] |
Add. (°) | 12.3 [9.5; 17.2] p = 0.565 | 14.3 [9.5; 17.5] p = 0.807 | 13.1 [10.3; 17.6] |
Rot. (°) | 10.7 [8.4; 13.1] p = 0.124 | 10.2 [6.9; 13] p = 0.051 | 13.0 [8.7; 15.9] |
Parameter | Affected | Intact | Control |
---|---|---|---|
X1 (% of GC) | 16.7 [15.6; 18.1] p = 0.973 | 17.1 [15.4; 18.7] p = 0.912 | 16.9 [14.9; 18.3] |
A1 (°) | 17.5 [8.2; 20.2] p = 0.039 | 20.1 [15.3; 22.1] p = 0.603 | 19.1 [17.5; 23.4] |
X2 (% of GC) | 43.8 [36.9; 46.8] p = 0.947 | 43.7 [41.6; 45.8] p = 0.929 | 44.1 [42.3; 45.2] |
A2 (°) | 9.6 [6; 12.1] p = 0.05 | 9.8 [7.5; 12.6] p = 0.019 | 5.4 [3.7; 10.8] |
X3 (% of GC) | 75.8 [74.4; 76.6] p = 0.002 | 76.5 [75.1; 77.5] p = 0.00002 | 74.2 [73.1; 75.1] |
A3 (°) | 67.9 [64.5; 72.2] p = 0.025 | 65.9 [59.8; 69.9] p = 0.0709 | 68.3 [65.7; 72.2] |
Add. (°) | 11.8 [8.7; 18.6] p = 0.037 | 10.95 [8.4; 15] p = 0.005 | 15.6 [12.0; 23.9] |
Rot. (°) | 16.25 [12.9; 20.5] p = 0.072 | 16.3 [13.2; 22] p = 0.195 | 19.9 [14.9; 23.9] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skvortsov, D.; Kaurkin, S.; Prizov, A.; Altukhova, A.; Troitskiy, A.; Lazko, F. Biomechanical Changes in Gait Patterns of Patients with Grade II Medial Gonarthritis. Diagnostics 2021, 11, 1242. https://doi.org/10.3390/diagnostics11071242
Skvortsov D, Kaurkin S, Prizov A, Altukhova A, Troitskiy A, Lazko F. Biomechanical Changes in Gait Patterns of Patients with Grade II Medial Gonarthritis. Diagnostics. 2021; 11(7):1242. https://doi.org/10.3390/diagnostics11071242
Chicago/Turabian StyleSkvortsov, Dmitry, Sergey Kaurkin, Alexey Prizov, Aljona Altukhova, Alexander Troitskiy, and Fedor Lazko. 2021. "Biomechanical Changes in Gait Patterns of Patients with Grade II Medial Gonarthritis" Diagnostics 11, no. 7: 1242. https://doi.org/10.3390/diagnostics11071242
APA StyleSkvortsov, D., Kaurkin, S., Prizov, A., Altukhova, A., Troitskiy, A., & Lazko, F. (2021). Biomechanical Changes in Gait Patterns of Patients with Grade II Medial Gonarthritis. Diagnostics, 11(7), 1242. https://doi.org/10.3390/diagnostics11071242