Development and Validation of a Radiomics Nomogram for Differentiating Mycoplasma Pneumonia and Bacterial Pneumonia
Abstract
:1. Background
2. Materials and Methods
2.1. Patients
2.2. CT Examinations
2.3. ROI Delineation
2.4. Features Extraction
2.5. Feature Selection and Model Construction
2.6. Model Evaluation
2.7. Nomogram and Decision Curve
2.8. Statistical Analysis
3. Results
3.1. Clinical Characteristic
3.2. Feature Selection and Radiomics Signature Building
3.3. Model Evaluation
3.4. Nomogram and Decision Curve
3.5. Clinical Application
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
CAP | Community-acquired pneumonia |
HRCT | High-resolution computed tomography |
ROI | Region of interest |
LASSO | Least absolute shrinkage and selection operator |
AUC | Area under the curve |
GLCM | Gray level co-occurrence matrix |
GLRLM | Gray level run-length matrix |
GLZSM | Gray level size zone matrix |
MP | Mycoplasma pneumonia |
BP | Bacterial pneumonia |
C-RP | C-reactive protein |
WBC | White blood cell count |
References
- Ding, Y.; Chu, C.; Li, Y.; Li, G.; Lei, X.; Zhou, W.; Chen, Z. High expression of HMGB1 in children with refractory Mycoplasma pneumoniae pneumonia. BMC Infect. Dis. 2018, 18, 439. [Google Scholar] [CrossRef] [PubMed]
- Waites, K.B.; Xiao, L.; Liu, Y.; Balish, M.F.; Atkinson, T.P. Mycoplasma pneumoniae from the Respiratory Tract and Beyond. Clin. Microbiol. Rev. 2017, 30, 747–809. [Google Scholar] [CrossRef] [Green Version]
- Hastings, D.L.; Harrington, K.J.; Kutty, P.K.; Rayman, R.J.; Spindola, D.; Diaz, M.H.; Thurman, K.A.; Winchell, J.M.; Safranek, T.J. Mycoplasma pneumoniae outbreak in a long-term care facility—Nebraska, 2014. MMWR Morb. Mortal. Wkly. Rep. 2015, 64, 296–299. [Google Scholar] [PubMed]
- Liu, J.; Zhao, F.; Lu, J.; Xu, H.; Liu, H.; Tang, X.; Yang, H.; Zhang, J.; Zhao, S. High Mycoplasma pneumoniae loads and persistent long-term Mycoplasma pneumoniae DNA in lower airway associated with severity of pediatric Mycoplasma pneumoniae pneumonia. BMC Infect. Dis. 2019, 19, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Aerts, H.J.W.L.; Velazquez, E.R.; Leijenaar, R.T.H.; Parmar, C.; Grossmann, P.; Carvalho, S.; Bussink, J.; Monshouwer, R.; Haibe-Kains, B.; Rietveld, D.; et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat. Commun. 2014, 5, 4006. [Google Scholar] [CrossRef]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, M.D.; Gollub, J.; Sirlin, C.; Ooi, C.; Chen, X. Radiogenomic analysis to identify imaging phenotypes associated with drug response gene expression programs in hepatocellular carcinoma. J. Vasc. Interv. Radiol. 2007, 18, 821–830. [Google Scholar] [CrossRef] [PubMed]
- Lambin, P.; Rios-Velazquez, E.; Leijenaar, R.; Carvalho, S.; van Stiphout, R.G.P.M.; Granton, P.; Zegers, C.M.L.; Gillies, R.; Boellard, R.; Dekker, A.; et al. Radiomics: Extracting more information from medical images using advanced feature analysis. Eur. J. Cancer 2012, 48, 441–446. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Deng, J.; She, Y.; Zhang, L.; Wang, B.; Ren, Y.; Wu, J.; Xie, D.; Sun, X.; Chen, C. Radiomics Signature Predicts the Recurrence-Free Survival in Stage I Non-Small Cell Lung Cancer. Ann. Thorac. Surg. 2020, 109, 1741–1749. [Google Scholar] [CrossRef]
- Wang, X.; Duan, H.; Li, X.; Ye, X.; Huang, G.; Nie, S.-D. A prognostic analysis method for non-small cell lung cancer based on the computed tomography radiomics. Phys. Med. Biol. 2020, 65, 045006. [Google Scholar] [CrossRef]
- Yanling, W.; Duo, G.; Zuojun, G.; Zhongqiang, S.; Yankai, W.; Shan, L.; Hongying, C. Radiomics Nomogram Analyses for Differentiating Pneumonia and Acute Paraquat Lung Injury. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Rubio, F.J.; Genton, M.G. Bayesian linear regression with skew-symmetric error distributions with applications to survival analysis. Stat. Med. 2016, 35, 2441–2454. [Google Scholar] [CrossRef] [Green Version]
- Aviner, S.; Miskin, H.; London, D.; Horowitz, S.; Schlesinger, M. Mycoplasma pneumonia Infection: A Possible Trigger for Immune Thrombocytopenia. Indian J. Hematol. Blood Transfus. 2011, 27, 46–50. [Google Scholar] [CrossRef] [Green Version]
- Tsinzerling, A.V. Pathological anatomy of pneumonia caused by Mycoplasma pneumoniae (mycoplasmosis of the lungs). Arkhiv Patol. 1972, 34, 19–24. [Google Scholar]
- Tanaka, H. Correlation between Radiological and Pathological Findings in Patients with Mycoplasma pneumoniae Pneumonia. Front. Microbiol. 2016, 7, 695. [Google Scholar] [CrossRef] [PubMed]
- Nambu, A.; Saito, A.; Araki, T.; Ozawa, K.; Hiejima, Y.; Akao, M.; Ohki, Z.; Yamaguchi, H. Chlamydia pneumoniae: Comparison with findings of mycoplasma pneumoniae and streptococcus pneumoniaeat thin-section CT. Radiology 2006, 238, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Okada, F.; Ando, Y.; Wakisaka, M.; Matsumoto, S.; Mori, H. Chlamydia pneumoniae pneumonia and Mycoplasma pneumoniae pneumonia: Comparison of clinical findings and CT findings. J. Comput. Assist. Tomogr. 2015, 29, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Reittner, P.; Müller, N.L.; Heyneman, L.; Johkoh, T.; Park, J.S.; Lee, K.S.; Honda, O.; Tomiyama, N. Mycoplasma pneumoniae pneumonia: Radiographic and high-resolution CT features in 28 patients. AJR Am. J. Roentgenol. 2000, 174, 37–41. [Google Scholar] [CrossRef]
- Jean, S.-S.; Chang, Y.-C.; Lin, W.-C.; Lee, W.-S.; Hsueh, P.-R.; Hsu, C.-W. Epidemiology, Treatment, and Prevention of Nosocomial Bacterial Pneumonia. J. Clin. Med. 2020, 9, 275. [Google Scholar] [CrossRef] [Green Version]
- Ishiguro, T.; Yoshii, Y.; Kanauchi, T.; Hoshi, T.; Takaku, Y.; Kagiyama, N.; Kurashima, K.; Takayanagi, N. Re-evaluation of the etiology and clinical and radiological features of community-acquired lobar pneumonia in adults. J. Infect. Chemother. 2018, 24, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zeng, C.; Yang, S.; Zhang, Y.; Song, S.; Liu, S.; Shu, Q.; Fang, X.; Chen, Q. Airway Epithelial Hepcidin Coordinates Lung Macrophages and Immunity Against Bacterial Pneumonia. Shock 2019, 54, 402–412. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Tian, J.; Dong, D.; Gu, D.; Dong, Y.; Zhang, L.; Lian, Z.; Liu, J.; Luo, X.; Pei, S.; et al. Radiomics Features of Multiparametric MRI as Novel Prognostic Factors in Advanced Nasopharyngeal Carcinoma. Clin. Cancer Res. 2017, 23, 4259–4269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skogen, K.; Ganeshan, B.; Good, C.; Critchley, G.; Miles, K. Measurements of heterogeneity in gliomas on computed tomography relationship to tumour grade. J. Neuro-Oncol. 2012, 111, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, A.; Gibbs, P.; Pickles, M.; Turnbull, L. Texture analysis in assessment and prediction of chemotherapy response in breast cancer. J. Magn. Reson. Imaging 2013, 38, 89–101. [Google Scholar] [CrossRef]
Characteristic | MP | BP | p |
---|---|---|---|
Age, mean ± years | 29.68 ± 9.22 | 43.08 ± 15.94 | <0.001 * |
Gender, No | 0.165 | ||
Male | 34 (56.67%) | 17 (42.50%) | |
Female | 26 (43.33%) | 23 (57.50%) | |
Temperature | <0.001 * | ||
Grade 1 | 7 (11.67%) | 17 (42.50%) | |
Grade 2 | 20 (33.33%) | 16 (40.00%) | |
Grade 3 | 33 (55.00%) | 7 (17.50%) | |
C-RP (mg/L) | 64.38 ± 49.54 | 46.89 ± 37.51 | 0.061 |
WBC (109/L) | 7.69 ± 2.49 | 8.56 ± 3.10 | 0.126 |
Neutrophil (%) | 83.06 ± 84.10 | 65.02 ± 18.62 | 0.186 |
Radiomics Features | Estimate | Value |
---|---|---|
stdDeviation | −0.758 | −1.17 |
Correlation_angle90_offset1 | 0.701 | 0.74 |
GLCMEntropy_angle90_offset4 | 1.154 | 2.26 |
Inertia_angle0_offset1 | −0.951 | −1.54 |
InverseDifferenceMoment_angle45_offset7 | −1.074 | −1.20 |
sumEntropy | 1.408 | 1.14 |
sumVariance | −1.049 | −1.29 |
ShortRunEmphasis_AllDirection_offset7 | 2.619 | 1.87 |
ShortRunEmphasis_angle45_offset7 | −3.371 | −2.70 |
ShortRunHighGreylevelEmphsaia_angle90_offset7 | 1.219 | 2.16 |
Information | Radiomics Model | Radiomics-Clinical Model | ||
---|---|---|---|---|
Train | Test | Train | Test | |
AUC | 0.877 | 0.810 | 0.905 | 0.847 |
Sensitivity | 0.762 | 0.667 | 0.976 | 0.889 |
Specificity | 0.821 | 0.750 | 0.714 | 0.667 |
Accuracy | 78.6% | 70.0% | 87.1% | 80.0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Li, T.; Cai, Q.; Wang, X.; Liao, Y.; Cheng, Y.; Zhou, Q. Development and Validation of a Radiomics Nomogram for Differentiating Mycoplasma Pneumonia and Bacterial Pneumonia. Diagnostics 2021, 11, 1330. https://doi.org/10.3390/diagnostics11081330
Li H, Li T, Cai Q, Wang X, Liao Y, Cheng Y, Zhou Q. Development and Validation of a Radiomics Nomogram for Differentiating Mycoplasma Pneumonia and Bacterial Pneumonia. Diagnostics. 2021; 11(8):1330. https://doi.org/10.3390/diagnostics11081330
Chicago/Turabian StyleLi, Honglin, Ting Li, Qinxin Cai, Xiaozhuan Wang, Yuting Liao, Yuanxiong Cheng, and Quan Zhou. 2021. "Development and Validation of a Radiomics Nomogram for Differentiating Mycoplasma Pneumonia and Bacterial Pneumonia" Diagnostics 11, no. 8: 1330. https://doi.org/10.3390/diagnostics11081330
APA StyleLi, H., Li, T., Cai, Q., Wang, X., Liao, Y., Cheng, Y., & Zhou, Q. (2021). Development and Validation of a Radiomics Nomogram for Differentiating Mycoplasma Pneumonia and Bacterial Pneumonia. Diagnostics, 11(8), 1330. https://doi.org/10.3390/diagnostics11081330