Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care
Abstract
:1. Introduction
1.1. Epidemiology of TB
1.2. Stages of TB Infection and Consequences
1.3. The Mycobacterium Tuberculosis Complex (MTBC)
M. tb Strains
1.4. Clinical TB Diagnostic Techniques and Their Limitations
1.4.1. TB-Specific Diagnostic Tests
Interferon Gamma Release Assays (IGRAs)
GeneXpert Test
Line Probe Assays
1.4.2. Serological Tests for TB
1.5. Aptamer-Based Diagnostic Systems for Rapid Detection of TB
1.6. Applications of Aptamers in the Diagnosis of Infectious Organisms
Aptamers for Detection of M. tb Biomarkers
1.7. Potential Biomarkers for Rapid Detection of TB
1.7.1. Blood-Associated TB Biomarkers
1.7.2. Urine-Associated TB Biomarkers
1.7.3. Multi-Target TB Biomarkers
2. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. Global Tuberculosis Report; World Health Organization: Geneva, Switzerland, 2020; p. 232, Licence: CC BY-NC-SA 3.0 IGO. Available online: https://apps.who.int/iris/bitstream/handle/10665/336069/9789240013131-eng.pdf (accessed on 29 December 2020).
- Huddart, S.; Nash, M.; Pai, M. Tuberculosis Diagnosis: Challenges and Solutions. J. Health Spec. 2016, 4, 230. [Google Scholar] [CrossRef]
- Davies, P.D.O.; Pai, M. The Diagnosis and Misdiagnosis of Tuberculosis. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Tuberc. Lung Dis. 2008, 12, 1226–1234. [Google Scholar]
- Zhou, J. Early Diagnosis of Pulmonary Tuberculosis Using Serum Biomarkers. Proteomics 2015, 15, 6–7. [Google Scholar] [CrossRef]
- Boehme, C.C.; Nabeta, P.; Hillemann, D.; Nicol, M.P.; Shenai, S.; Krapp, F.; Allen, J.; Tahirli, R.; Blakemore, R.; Rustomjee, R.; et al. Rapid Molecular Detection of Tuberculosis and Rifampin Resistance. N. Engl. J. Med. 2010, 363, 1005–1015. [Google Scholar] [CrossRef] [Green Version]
- Lange, C.; Mori, T. Advances in the Diagnosis of Tuberculosis. Respirology 2010, 15, 220–240. [Google Scholar] [CrossRef]
- Falzon, D.; Timimi, H.; Kurosinski, P.; Migliori, G.B.; Van Gemert, W.; Denkinger, C.; Isaacs, C.; Story, A.; Garfein, R.S.; do Valle Bastos, L.G.; et al. Digital Health for the End TB Strategy: Developing Priority Products and Making Them Work. Eur. Respir. J. 2016, 48, 29–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steingart, K.R.; Dendukuri, N.; Henry, M.; Schiller, I.; Nahid, P.; Hopewell, P.C.; Ramsay, A.; Pai, M.; Laal, S. Performance of Purified Antigens for Serodiagnosis of Pulmonary Tuberculosis: A Meta-Analysis. Clin. Vaccine Immunol. CVI 2009, 16, 260–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavania, S.; Das, R.; Dhiman, A.; Myneedu, V.P.; Verma, A.; Singh, N.; Sharma, T.K.; Tyagi, J.S. Aptamer-Based TB Antigen Tests for the Rapid Diagnosis of Pulmonary Tuberculosis: Potential Utility in Screening for Tuberculosis. ACS Infect. Dis. 2018, 4, 1718–1726. [Google Scholar] [CrossRef]
- Saad, M.; Faucher, S.P. Aptamers and Aptamer-Coupled Biosensors to Detect Water-Borne Pathogens. Front. Microbiol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Famulok, M.; Mayer, G. Aptamers and SELEX in Chemistry & Biology. Chem. Biol. 2014, 21, 1055–1058. [Google Scholar] [CrossRef] [Green Version]
- Tabarzad, M.; Jafari, M. Trends in the Design and Development of Specific Aptamers Against Peptides and Proteins. Protein J. 2016, 35, 81–99. [Google Scholar] [CrossRef]
- Shigdar, S.; Macdonald, J.; O’Connor, M.; Wang, T.; Xiang, D.; Al.Shamaileh, H.; Qiao, L.; Wei, M.; Zhou, S.-F.; Zhu, Y.; et al. Aptamers as Theranostic Agents: Modifications, Serum Stability and Functionalisation. Sensors 2013, 13, 13624–13637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dhar, P.; Samarasinghe, R.M.; Shigdar, S. Antibodies, Nanobodies, or Aptamers—Which Is Best for Deciphering the Proteomes of Non-Model Species? Int. J. Mol. Sci. 2020, 21, 2485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angkawanish, T.; Wajjwalku, W.; Sirimalaisuwan, A.; Kaewsakhorn, T.; Boonsri, K.; Rutten, V.P.M.G. Mycobacterium Tuberculosis Infection of Domesticated Asian Elephants, Thailand. Emerg. Infect. Dis. 2010, 16, 1949–1951. [Google Scholar] [CrossRef]
- Parsons, S.; Smith, S.G.D.; Martins, Q.; Horsnell, W.G.C.; Gous, T.A.; Streicher, E.M.; Warren, R.M.; van Helden, P.D.; Gey van Pittius, N.C. Pulmonary Infection Due to the Dassie Bacillus (Mycobacterium Tuberculosis Complex Sp.) in a Free-Living Dassie (Rock Hyrax-Procavia Capensis) from South Africa. Tuberc. Edinb. Scotl. 2008, 88, 80–83. [Google Scholar] [CrossRef]
- Senthilingam, M. Tuberculosis Is Spreading from Animals to Humans. Available online: https://www.cnn.com/2015/12/23/health/tuberculosis-from-animals/index.html (accessed on 29 April 2021).
- Kanabus, A. People with TB—Latest Figures. TBFacts. 2020. Available online: https://tbfacts.org/people-tb/ (accessed on 29 April 2021).
- WHO. WHO: Tuberculosis in Women. Available online: https://www.who.int/tb/publications/tb_women_factsheet.pdf?ua=1 (accessed on 29 April 2021).
- Bell, L.C.; Noursadeghi, M. Pathogenesis of HIV-1 and Mycobacterium Tuberculosis Co-Infection. Nat. Rev. Microbiol. 2018. [Google Scholar] [CrossRef] [PubMed]
- Lönnroth, K.; Shah, N.S.; Lange, C. State-of-the-Art Series on Tuberculosis and Migration. Int. J. Tuberc. Lung Dis. 2016, 20, 1280–1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Tackling the Drug-Resistant TB Crisis. Available online: https://www.who.int/activities/tackling-the-drug-resistant-tb-crisis (accessed on 26 May 2021).
- Korzh, I.V.; Romanko, T.A.; Zhirova, I.V.; Podgaina, M.V.; Kalaycheva, S.G. Study of Social and Epidemiological Indicators of Tuberculosis in the European Region. J. Adv. Pharm. Educ. Res. 2019, 9, 6. [Google Scholar]
- UNAIDS. Ending Tuberculosis and AIDS: A Joint Response in the Era of Sustainable Development Goals. Available online: https://borgenproject.org/tag/ending-tuberculosis-and-aids-a-joint-response-in-the-era-of-sustainable-development-goals/ (accessed on 29 April 2021).
- Wood, R.; Bekker, L.-G. An Epidemic Uncurbed: Tuberculosis in Cape Town, South Africa, 1910–2010. Trans. R. Soc. South Afr. 2017, 72, 234–241. [Google Scholar] [CrossRef]
- Reid, M.J.A.; Arinaminpathy, N.; Bloom, A.; Bloom, B.R.; Boehme, C.; Chaisson, R.; Chin, D.P.; Churchyard, G.; Cox, H.; Ditiu, L.; et al. Building a Tuberculosis-Free World: The Lancet Commission on Tuberculosis. Lancet 2019, 393, 1331–1384. [Google Scholar] [CrossRef] [Green Version]
- Blouin, Y. A New Scenario for the Early Evolution of Mycobacterium Tuberculosis. Ph.D. Thesis, Université Paris Sud—Paris XI, Le Kremlin-Bicêtre, France, 2014; p. 117. [Google Scholar]
- Jeong, Y.H.; Hur, Y.G.; Lee, H.; Kim, S.; Cho, J.E.; Chang, J.; Shin, S.J.; Lee, H.; Kang, Y.A.; Cho, S.N.; et al. Discrimination between Active and Latent Tuberculosis Based on Ratio of Antigen-Specific to Mitogen-Induced IP-10 Production. J. Clin. Microbiol. 2015, 53, 504–510. [Google Scholar] [CrossRef] [Green Version]
- CDC. Fact Sheets|General|Latent TB Infection vs. TB Disease|TB|CDC. Available online: https://www.cdc.gov/tb/publications/factsheets/general/ltbiandactivetb.htm (accessed on 17 May 2021).
- Peruń, A.; Biedroń, R.; Konopiński, M.K.; Białecka, A.; Marcinkiewicz, J.; Józefowski, S. Phagocytosis of Live versus Killed or Fluorescently Labeled Bacteria by Macrophages Differ in Both Magnitude and Receptor Specificity. Immunol. Cell Biol. 2017, 95, 424–435. [Google Scholar] [CrossRef]
- Wong, K.-W.; Jacobs, W.R. Postprimary Tuberculosis and Macrophage Necrosis: Is There a Big ConNECtion? mBio 2016, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behar, S.M.; Divangahi, M.; Remold, H.G. Evasion of Innate Immunity by Mycobacterium Tuberculosis: Is Death an Exit Strategy? Nat. Rev. Microbiol. 2010, 8, 668–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montales, M.T.; Beebe, A.; Chaudhury, A.; Patil, N. Mycobacterium Tuberculosis Infection in a HIV-Positive Patient. Respir. Med. Case Rep. 2015, 16, 160–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Tuberculosis (TB): Latent Tuberculosis Infection (LTBI)—FAQs. Available online: https://www.who.int/tb/areas-of-work/preventive-care/ltbi/faqs/en/ (accessed on 26 May 2021).
- Jilani, T.N.; Avula, A.; Zafar Gondal, A.; Siddiqui, A.H. Active Tuberculosis. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- CDC. Exposure to TB|Basic TB Facts|TB|CDC. Available online: https://www.cdc.gov/tb/topic/basics/exposed.htm (accessed on 28 December 2020).
- Loddenkemper, R.; M, L.; A, Z. Clinical Aspects of Adult Tuberculosis. Cold Spring Harb. Perspect. Med. 2015, 6, a017848. [Google Scholar] [CrossRef] [Green Version]
- Hunter, R.L. Tuberculosis as a Three-Act Play: A New Paradigm for the Pathogenesis of Pulmonary Tuberculosis. Tuberculosis 2016, 97, 8–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CDC. Chapter 2: Transmission and Pathogenesis of Tuberculosis. The Centers for Disease Control and Prevention. Available online: https://www.cdc.gov/tb/education/corecurr/pdf/chapter2.pdf (accessed on 20 April 2020).
- Michos, A.G.; Daikos, G.L.; Tzanetou, K.; Theodoridou, M.; Moschovi, M.; Nicolaidou, P.; Petrikkos, G.; Syriopoulos, T.; Kanavaki, S.; Syriopoulou, V.P. Detection of Mycobacterium Tuberculosis DNA in Respiratory and Nonrespiratory Specimens by the Amplicor® MTB PCR. Diagn. Microbiol. Infect. Dis. 2006, 54, 121–126. [Google Scholar] [CrossRef]
- Gounden, S.; Perumal, R.; Magula, N. Extrapulmonary Tuberculosis in the Setting of HIV Hyperendemicity at a Tertiary Hospital in Durban, South Africa. South. Afr. J. Infect. Dis. 2018, 33, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Gandhare, A.; Mahashur, A. Tuberculosis of the Lymph Nodes: Many Facets, Many Hues. Astrocyte 2017, 4, 80. [Google Scholar] [CrossRef]
- Rodriguez-Campos, S.; Smith, N.H.; Boniotti, M.B.; Aranaz, A. Overview and Phylogeny of Mycobacterium Tuberculosis Complex Organisms: Implications for Diagnostics and Legislation of Bovine Tuberculosis. Res. Vet. Sci. 2014, 97, S5–S19. [Google Scholar] [CrossRef]
- CDC. Epidemiology of Tuberculosis. The Centers for Disease Control and Prevention; p. 36. Available online: https://www.cdc.gov/tb/education/ssmodules/pdfs/Module2.pdf (accessed on 29 April 2021).
- Comas, I.; Coscolla, M.; Luo, T.; Borrell, S.; Holt, K.E.; Kato-Maeda, M.; Parkhill, J.; Malla, B.; Berg, S.; Thwaites, G.; et al. Out-of-Africa Migration and Neolithic Coexpansion of Mycobacterium Tuberculosis with Modern Humans. Nat. Genet. 2013, 45, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Yimer, S.A.; Norheim, G.; Namouchi, A.; Zegeye, E.D.; Kinander, W.; Tønjum, T.; Bekele, S.; Mannsåker, T.; Bjune, G.; Aseffa, A.; et al. Mycobacterium Tuberculosis Lineage 7 Strains Are Associated with Prolonged Patient Delay in Seeking Treatment for Pulmonary Tuberculosis in Amhara Region, Ethiopia. J. Clin. Microbiol. 2015, 53, 1301–1309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hanekom, M.; Gey van Pittius, N.C.; McEvoy, C.; Victor, T.C.; Van Helden, P.D.; Warren, R.M. Mycobacterium Tuberculosis Beijing Genotype: A Template for Success. Tuberc. Edinb. Scotl. 2011, 91, 510–523. [Google Scholar] [CrossRef]
- Krishnan, N.; Malaga, W.; Constant, P.; Caws, M.; Chau, T.T.H.; Salmons, J.; Lan, N.T.N.; Bang, N.D.; Daffé, M.; Young, D.B.; et al. Mycobacterium Tuberculosis Lineage Influences Innate Immune Response and Virulence and Is Associated with Distinct Cell Envelope Lipid Profiles. PLoS ONE 2011, 6, e23870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Albanna, A.S.; Reed, M.B.; Kotar, K.V.; Fallow, A.; McIntosh, F.A.; Behr, M.A.; Menzies, D. Reduced Transmissibility of East African Indian Strains of Mycobacterium Tuberculosis. PLoS ONE 2011, 6, e25075. [Google Scholar] [CrossRef] [Green Version]
- Yeboah-Manu, D.; Asante-Poku, A.; Bodmer, T.; Stucki, D.; Koram, K.; Bonsu, F.; Pluschke, G.; Gagneux, S. Genotypic Diversity and Drug Susceptibility Patterns among M. Tuberculosis Complex Isolates from South-Western Ghana. PLoS ONE 2011, 6, e21906. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, N.R.; Weissman, D.; Moodley, P.; Ramathal, M.; Elson, I.; Kreiswirth, B.N.; Mathema, B.; Shashkina, E.; Rothenberg, R.; Moll, A.P.; et al. Nosocomial Transmission of Extensively Drug-Resistant Tuberculosis in a Rural Hospital in South Africa. J. Infect. Dis. 2013, 207, 9–17. [Google Scholar] [CrossRef]
- Mlambo, C.K.; Warren, R.M.; Poswa, X.; Victor, T.C.; Duse, A.G.; Marais, E. Genotypic Diversity of Extensively Drug-Resistant Tuberculosis (XDR-TB) in South Africa. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Tuberc. Lung Dis. 2008, 12, 99–104. [Google Scholar]
- Stavrum, R.; Mphahlele, M.; Ovreås, K.; Muthivhi, T.; Fourie, P.B.; Weyer, K.; Grewal, H.M.S. High Diversity of Mycobacterium Tuberculosis Genotypes in South Africa and Preponderance of Mixed Infections among ST53 Isolates. J. Clin. Microbiol. 2009, 47, 1848–1856. [Google Scholar] [CrossRef] [Green Version]
- Gandhi, N.R.; Brust, J.C.M.; Moodley, P.; Weissman, D.; Heo, M.; Ning, Y.; Moll, A.P.; Friedland, G.H.; Sturm, A.W.; Shah, N.S. Minimal Diversity of Drug-Resistant Mycobacterium Tuberculosis Strains, South Africa1. Emerg. Infect. Dis. 2014, 20, 426–437. [Google Scholar] [CrossRef]
- Chihota, V.N.; Müller, B.; Mlambo, C.K.; Pillay, M.; Tait, M.; Streicher, E.M.; Marais, E.; van der Spuy, G.D.; Hanekom, M.; Coetzee, G.; et al. Population Structure of Multi- and Extensively Drug-Resistant Mycobacterium Tuberculosis Strains in South Africa. J. Clin. Microbiol. 2012, 50, 995–1002. [Google Scholar] [CrossRef] [Green Version]
- Klopper, M.; Warren, R.M.; Hayes, C.; Gey van Pittius, N.C.; Streicher, E.M.; Müller, B.; Sirgel, F.A.; Chabula-Nxiweni, M.; Hoosain, E.; Coetzee, G.; et al. Emergence and Spread of Extensively and Totally Drug-Resistant Tuberculosis, South Africa. Emerg. Infect. Dis. 2013, 19, 449–455. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashiru, O.T.; Pillay, M.; Sturm, A.W. Adhesion to and Invasion of Pulmonary Epithelial Cells by the F15/LAM4/KZN and Beijing Strains of Mycobacterium Tuberculosis. J. Med. Microbiol. 2010, 59, 528–533. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ECDC. Handbook on Tuberculosis Laboratory Diagnostic Methods in the European Union: Updated 2018; Publications Office: Luxembourg, 2018; Available online: https://data.europa.eu/doi/10.2900/914169 (accessed on 28 December 2020).
- Caulfield, A.J.; Wengenack, N.L. Diagnosis of Active Tuberculosis Disease: From Microscopy to Molecular Techniques. J. Clin. Tuberc. Mycobact. Dis. 2016, 4, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Pantoja, A.; Kik, S.V.; Denkinger, C.M. Costs of Novel Tuberculosis Diagnostics—Will Countries Be Able to Afford It? J. Infect. Dis. 2015, 211, S67–S77. [Google Scholar] [CrossRef] [Green Version]
- Singhal, R.; Myneedu, V.P. Microscopy as a Diagnostic Tool in Pulmonary Tuberculosis. Int. J. Mycobacteriol. 2015, 4, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Siddiqi, K.; Walley, J.; Khan, M.A.; Shah, K.; Safdar, N. Clinical Guidelines to Diagnose Smear-Negative Pulmonary Tuberculosis in Pakistan, a Country with Low-HIV Prevalence. Trop. Med. Int. Health TM IH 2006, 11, 323–331. [Google Scholar] [CrossRef]
- Boum, Y.; Orikiriza, P.; Rojas-Ponce, G.; Riera-Montes, M.; Atwine, D.; Nansumba, M.; Bazira, J.; Tuyakira, E.; De Beaudrap, P.; Bonnet, M.; et al. Use of Colorimetric Culture Methods for Detection of Mycobacterium Tuberculosis Complex Isolates from Sputum Samples in Resource-Limited Settings. J. Clin. Microbiol. 2013, 51, 2273–2279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palange, P.; Narang, R.; Kandi, V. Evaluation of Culture Media for Isolation of Mycobacterium Species from Human Clinical Specimens. Cureus 2016, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ball, L.; Vercesi, V.; Costantino, F.; Chandrapatham, K.; Pelosi, P. Lung Imaging: How to Get Better Look inside the Lung. Ann. Transl. Med. 2017, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sperandeo, M.; Tinti, M.G.; Rea, G. Chest Ultrasound versus Chest X-Rays for Detecting Pneumonia in Children: Why Compare Them Each Other If Together Can Improve the Diagnosis? Eur. J. Radiol. 2017, 93, 291–292. [Google Scholar] [CrossRef] [PubMed]
- Del Ciello, A.; Contegiacomo, F.P. Missed Lung Cancer: When, Where, and Why?—Abstract—Europe PMC. Available online: https://europepmc.org/article/med/28206951 (accessed on 29 April 2021).
- Pedrazzoli, D.; Lalli, M.; Boccia, D.; Houben, R.; Kranzer, K. Can Tuberculosis Patients in Resource-Constrained Settings Afford Chest Radiography? Eur. Respir. J. 2017, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. The End TB Strategy. Chest Radiography in Tuberculosis Detection: Summary of Current WHO Recommendations and Guidance on Programmatic Approaches. Geneva. 2016. Available online: https://apps.who.int/iris/bitstream/handle/10665/252424/9789241511506-eng.pdf?sequence=1 (accessed on 20 December 2020).
- Yang, H.; Kruh-Garcia, N.A.; Dobos, K.M. Purified Protein Derivatives of Tuberculin--Past, Present, and Future. FEMS Immunol. Med. Microbiol. 2012, 66, 273–280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dwivedi, S.; Purohit, P.; Misra, R.; Pareek, P.; Goel, A.; Khattri, S.; Pant, K.K.; Misra, S.; Sharma, P. Diseases and Molecular Diagnostics: A Step Closer to Precision Medicine. Indian J. Clin. Biochem. 2017, 32, 374–398. [Google Scholar] [CrossRef]
- Tayfun, C.; Ozkisa, T.; Aribal, S.; Kaya, H.; Incedayi, M.; Ulcay, A.; Ciftci, F. High Resolution Computed Tomography Findings in Smear-Negative Pulmonary Tuberculosis Patients According to Their Culture Status. J. Thorac. Dis. 2014, 6. [Google Scholar] [CrossRef]
- Lewinsohn, D.M.; Leonard, M.K.; LoBue, P.A.; Cohn, D.L.; Daley, C.L.; Desmond, E.; Keane, J.; Lewinsohn, D.A.; Loeffler, A.M.; Mazurek, G.H.; et al. Official American Thoracic Society/Infectious Diseases Society of America/Centers for Disease Control and Prevention Clinical Practice Guidelines: Diagnosis of Tuberculosis in Adults and Children. Clin. Infect. Dis. 2017, 64, 111–115. [Google Scholar] [CrossRef]
- Mukai, S.; Shigemura, K.; Yamamichi, F.; Kitagawa, K.; Takami, N.; Nomi, M.; Arakawa, S.; Fujisawa, M. Comparison of Cost-Effectiveness between the QuantiFERON-TB Gold-In-Tube and T-Spot Tests for Screening Health-Care Workers for Latent Tuberculosis Infection. Int. J. Mycobacteriol. 2017, 6, 83–86. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Liu, F.; Lu, X.; Huang, Q. Evaluation of GeneXpert MTB/RIF for Detecting Mycobacterium Tuberculosis in a Hospital in China. J. Int. Med. Res. 2017, 45, 816–822. [Google Scholar] [CrossRef] [Green Version]
- Pandey, P.; Pant, N.D.; Rijal, K.R.; Shrestha, B.; Kattel, S.; Banjara, M.R.; Maharjan, B.; Kc, R. Diagnostic Accuracy of GeneXpert MTB/RIF Assay in Comparison to Conventional Drug Susceptibility Testing Method for the Diagnosis of Multidrug-Resistant Tuberculosis. PLoS ONE 2017, 12, e0169798. [Google Scholar] [CrossRef]
- Walzl, G.; Haks, M.C.; Joosten, S.A.; Kleynhans, L.; Ronacher, K.; Ottenhoff, T.H.M. Clinical Immunology and Multiplex Biomarkers of Human Tuberculosis. Cold Spring Harb. Perspect. Med. 2015, 5, a018515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaso, A.; Hailu, A. Cost-Effectiveness of GeneXpert Compared to Smear Microscopy for Diagnosis of Tuberculosis in Ethiopia. Res. Sq. 2020. pre-print. [Google Scholar] [CrossRef]
- TB Online TB Online—Time for $5 Coalition Statement: Cepheid’s Updated GeneXpert Pricing Does Not Address Country Needs. Available online: https://www.tbonline.info/posts/2021/5/10/time-5-coalition-statement-cepheids-updated-genexp/ (accessed on 21 May 2021).
- Davis, J.L.; Cattamanchi, A.; Cuevas, L.E.; Hopewell, P.C.; Steingart, K.R. Diagnostic Accuracy of Same-Day Microscopy versus Standard Microscopy for Pulmonary Tuberculosis: A Systematic Review and Meta-Analysis. Lancet Infect. Dis. 2013, 13, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Little, K.M.; Pai, M.; Dowdy, D.W. Costs and Consequences of Using Interferon-γ Release Assays for the Diagnosis of Active Tuberculosis in India. PLoS ONE 2015, 10, e0124525. [Google Scholar] [CrossRef]
- Ninan, M.M.; Gowri, M.; Christopher, D.J.; Rupali, P.; Michael, J.S. The Diagnostic Utility of Line Probe Assays for Multidrug-Resistant Tuberculosis. Pathog. Glob. Health 2016, 110, 194–199. [Google Scholar] [CrossRef] [Green Version]
- Shah, M.; Chihota, V.; Coetzee, G.; Churchyard, G.; Dorman, S.E. Comparison of Laboratory Costs of Rapid Molecular Tests and Conventional Diagnostics for Detection of Tuberculosis and Drug-Resistant Tuberculosis in South Africa. BMC Infect. Dis. 2013, 13, 352. [Google Scholar] [CrossRef] [Green Version]
- Broger, T.; Basu Roy, R.; Filomena, A.; Greef, C.H.; Rimmele, S.; Havumaki, J.; Danks, D.; Schneiderhan-Marra, N.; Gray, C.M.; Singh, M.; et al. Diagnostic Performance of Tuberculosis-Specific IgG Antibody Profiles in Patients with Presumptive Tuberculosis from Two Continents. Clin. Infect. Dis. 2017, 64, 947–955. [Google Scholar] [CrossRef]
- WHO Tuberculosis: Serodiagnostic Tests Policy Statement. Available online: https://www.who.int/tb/features_archive/factsheet_serodiagnostic_test.pdf?ua=1 (accessed on 20 December 2020).
- Steingart, K.R.; Ramsay, A.; Dowdy, D.W.; Pai, M. Serological Tests for the Diagnosis of Active Tuberculosis: Relevance for India. Indian J. Med. Res. 2012, 135, 695–702. [Google Scholar]
- Drain, P.K.; Hyle, E.P.; Noubary, F.; Freedberg, K.A.; Wilson, D.; Bishai, W.R.; Rodriguez, W.; Bassett, I.V. Diagnostic Point-of-Care Tests in Resource-Limited Settings. Lancet Infect. Dis. 2014, 14, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Hansen, G.T. Point-of-Care Testing in Microbiology: A Mechanism for Improving Patient Outcomes. Clin. Chem. 2020, 66, 124–137. [Google Scholar] [CrossRef]
- Soh, J.H.; Chan, H.-M.; Ying, J.Y. Strategies for Developing Sensitive and Specific Nanoparticle-Based Lateral Flow Assays as Point-of-Care Diagnostic Device. Nano Today 2020, 30, 100831. [Google Scholar] [CrossRef]
- Chen, H.; Liu, K.; Li, Z.; Wang, P. Point of Care Testing for Infectious Diseases. Clin. Chim. Acta Int. J. Clin. Chem. 2019, 493, 138–147. [Google Scholar] [CrossRef]
- Who Policy Guidance. The Use of Lateral Flow Urine Lipoarabinomannan Assay (LF-LAM) for the Diagnosis and Screening of Active Tuberculosis in People Living with HIV. Available online: https://www.who.int/tb/areas-of-work/laboratory/policy_statement_lam_web.pdf (accessed on 19 May 2021).
- Haridas, T.K.; Thiruvengadam, S.; Bishor, V.I. Development of a PCR based nucleic acid lateral flow assay device for detection of mycobacterium tuberculosis complex. Int. J. PharmTech Res. 2014, 6, 1695–1702. [Google Scholar]
- Koczula, K.M.; Gallotta, A. Lateral Flow Assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Xie, J. Progress on the Biomarkers for Tuberculosis Diagnosis. Crit. Rev. Eukaryot. Gene Expr. 2011, 21, 379–391. [Google Scholar] [CrossRef] [PubMed]
- Steingart, K.R.; Flores, L.L.; Dendukuri, N.; Schiller, I.; Laal, S.; Ramsay, A.; Hopewell, P.C.; Pai, M. Commercial Serological Tests for the Diagnosis of Active Pulmonary and Extrapulmonary Tuberculosis: An Updated Systematic Review and Meta-Analysis. PLoS Med. 2011, 8, e1001062. [Google Scholar] [CrossRef] [Green Version]
- Chen, A.; Yang, S. Replacing Antibodies with Aptamers in Lateral Flow Immunoassay. Biosens. Bioelectron. 2015, 71, 230–242. [Google Scholar] [CrossRef]
- Cates, L.; Crudu, V.; Codreanu, A.; Ciobanu, N.; Fosburgh, H.; Cohen, T.; Menzies, N.A. Laboratory Costs of Diagnosing TB in a High Multidrug-Resistant TB Setting. Int. J. Tuberc. Lung Dis. 2021, 25, 228–230. [Google Scholar] [CrossRef]
- Nijhawan, A.E.; Iroh, P.A.; Brown, L.S.; Winetsky, D.; Porsa, E. Cost Analysis of Tuberculin Skin Test and the QuantiFERON-TB Gold In-Tube Test for Tuberculosis Screening in a Correctional Setting in Dallas, Texas, USA. BMC Infect. Dis. 2016, 16, 564. [Google Scholar] [CrossRef] [Green Version]
- Yan, L.; Xiao, H.; Han, M.; Zhang, Q. Diagnostic Value of T-SPOT.TB Interferon-γ Release Assays for Active Tuberculosis. Exp. Ther. Med. 2015, 10, 345–351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- kamali Kakhki, R.; Aryan, E.; Meshkat, Z.; Sankian, M. Development of a Cost-Effective Line Probe Assay for Rapid Detection and Differentiation of Mycobacterium Species: A Pilot Study. Rep. Biochem. Mol. Biol. 2020, 8, 383–393. [Google Scholar]
- Ellington, A.D.; Szostak, J.W. In Vitro Selection of RNA Molecules That Bind Specific Ligands. Nature 1990, 346, 818–822. [Google Scholar] [CrossRef]
- Robertson, D.L.; Joyce, G.F. Selection in Vitro of an RNA Enzyme That Specifically Cleaves Single-Stranded DNA. Nature 1990, 344, 467–468. [Google Scholar] [CrossRef]
- Tuerk, C.; Gold, L. Systematic Evolution of Ligands by Exponential Enrichment: RNA Ligands to Bacteriophage T4 DNA Polymerase. Science 1990, 249, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Darmostuk, M.; Rimpelova, S.; Gbelcova, H.; Ruml, T. Current Approaches in SELEX: An Update to Aptamer Selection Technology. Biotechnol. Adv. 2015, 33, 1141–1161. [Google Scholar] [CrossRef] [PubMed]
- Ozer, A.; Pagano, J.M.; Lis, J.T. New Technologies Provide Quantum Changes in the Scale, Speed, and Success of SELEX Methods and Aptamer Characterization. Mol. Ther. Nucleic Acids 2014, 3, e183. [Google Scholar] [CrossRef]
- Song, S.; Wang, L.; Li, J.; Fan, C.; Zhao, J. Aptamer-Based Biosensors. TrAC Trends Anal. Chem. 2008, 27, 108–117. [Google Scholar] [CrossRef]
- Wilson, D.S.; Keefe, A.D.; Szostak, J.W. The Use of MRNA Display to Select High-Affinity Protein-Binding Peptides. Proc. Natl. Acad. Sci. USA 2001, 98, 3750–3755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, H.; Zhang, W.; Jia, S.; Guan, Z.; Yang, C.J.; Zhu, Z. Microfluidic Approaches to Rapid and Efficient Aptamer Selection. Biomicrofluidics 2014, 8, 041501. [Google Scholar] [CrossRef] [PubMed]
- Vater, A.; Jarosch, F.; Buchner, K.; Klussmann, S. Short Bioactive Spiegelmers to Migraine-Associated Calcitonin Gene-Related Peptide Rapidly Identified by a Novel Approach: Tailored-SELEX. Nucleic Acids Res. 2003, 31, e130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buglak, A.A.; Samokhvalov, A.V.; Zherdev, A.V.; Dzantiev, B.B. Methods and Applications of In Silico Aptamer Design and Modeling. Int. J. Mol. Sci. 2020, 21, 8420. [Google Scholar] [CrossRef]
- RayBiotech Introduction to Aptamers. Available online: https://www.raybiotech.com/custom-aptamer-services/ (accessed on 7 July 2021).
- Niu, S.; Lv, Z.; Liu, J.; Bai, W.; Yang, S.; Chen, A. Colorimetric Aptasensor Using Unmodified Gold Nanoparticles for Homogeneous Multiplex Detection. PLoS ONE 2014, 9, e109263. [Google Scholar] [CrossRef]
- Liu, J.; Lu, Y. Fast Colorimetric Sensing of Adenosine and Cocaine Based on a General Sensor Design Involving Aptamers and Nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Li, B.; Li, J.; Wang, E.; Dong, S. Simple and Sensitive Aptamer-Based Colorimetric Sensing of Protein Using Unmodified Gold Nanoparticle Probes. Chem. Commun. Camb. Engl. 2007, 3735–3737. [Google Scholar] [CrossRef]
- Nagarkatti, R.; Bist, V.; Sun, S.; de Araujo, F.F.; Nakhasi, H.L.; Debrabant, A. Development of an Aptamer-Based Concentration Method for the Detection of Trypanosoma Cruzi in Blood. PLoS ONE 2012, 7, e43533. [Google Scholar] [CrossRef]
- Singh, N.K.; Jain, P.; Das, S.; Goswami, P. Dye Coupled Aptamer-Captured Enzyme Catalyzed Reaction for Detection of Pan Malaria and P. Falciparum Species in Laboratory Settings and Instrument-Free Paper-Based Platform. Anal. Chem. 2019, 91, 4213–4221. [Google Scholar] [CrossRef] [PubMed]
- Strimbu, K.; Tavel, J.A. What Are Biomarkers? Curr. Opin. HIV AIDS 2010, 5, 463–466. [Google Scholar] [CrossRef]
- Babrak, L.M.; Menetski, J.; Rebhan, M.; Nisato, G.; Zinggeler, M.; Brasier, N.; Baerenfaller, K.; Brenzikofer, T.; Baltzer, L.; Vogler, C.; et al. Traditional and Digital Biomarkers: Two Worlds Apart? Digit. Biomark. 2019, 3, 92–102. [Google Scholar] [CrossRef]
- Goletti, D.; Arlehamn, C.S.L.; Scriba, T.J.; Anthony, R.; Cirillo, D.M.; Alonzi, T.; Denkinger, C.M.; Cobelens, F. Can We Predict Tuberculosis Cure? What Tools Are Available? Eur. Respir. J. 2018, 52. [Google Scholar] [CrossRef]
- McLean, M.R.; Lu, L.L.; Kent, S.J.; Chung, A.W. An Inflammatory Story: Antibodies in Tuberculosis Comorbidities. Front. Immunol. 2019, 10. [Google Scholar] [CrossRef]
- Ehrt, S.; Schnappinger, D.; Rhee, K.Y. Metabolic Principles of Persistence and Pathogenicity in Mycobacterium Tuberculosis. Nat. Rev. Microbiol. 2018, 16, 496–507. [Google Scholar] [CrossRef]
- Huygen, K. The Immunodominant T-Cell Epitopes of the Mycolyl-Transferases of the Antigen 85 Complex of M. Tuberculosis. Front. Immunol. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Målen, H.; Pathak, S.; Søfteland, T.; de Souza, G.A.; Wiker, H.G. Definition of Novel Cell Envelope Associated Proteins in Triton X-114 Extracts of Mycobacterium Tuberculosis H37Rv. BMC Microbiol. 2010, 10, 132. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Xue, Y.; Gao, H.; Wang, L.; Ding, T.; Bai, W.; Fan, A.; Zhang, J.; An, Q.; Xu, Z. Expression and Purification of Mycobacterium Tuberculosis ESAT-6 and MPT64 Fusion Protein and Its Immunoprophylactic Potential in Mouse Model. Protein Expr. Purif. 2008, 59, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, B.; Baulard, A.R.; Locht, C.; Narayanan, P.R.; Raja, A. Cloning, Expression, and Purification of the 27kDa (MPT51, Rv3803c) Protein of Mycobacterium Tuberculosis. Protein Expr. Purif. 2004, 36, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Crane, D.D.; Simpson, R.M.; Zhu, Y.; Hickey, M.J.; Sherman, D.R.; Barry, C.E. The 16-KDa α-Crystallin (Acr) Protein of Mycobacterium Tuberculosis Is Required for Growth in Macrophages. Proc. Natl. Acad. Sci. USA 1998, 95, 9578–9583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Russell, T.M.; Green, L.S.; Rice, T.; Kruh-Garcia, N.A.; Dobos, K.; Groote, M.A.D.; Hraha, T.; Sterling, D.G.; Janjic, N.; Ochsner, U.A. Potential of High-Affinity, Slow Off-Rate Modified Aptamer Reagents for Mycobacterium Tuberculosis Proteins as Tools for Infection Models and Diagnostic Applications. J. Clin. Microbiol. 2017, 55, 3072–3088. [Google Scholar] [CrossRef] [Green Version]
- Tang, X.-L.; Zhou, Y.-X.; Wu, S.-M.; Pan, Q.; Xia, B.; Zhang, X.-L. CFP10 and ESAT6 Aptamers as Effective Mycobacterial Antigen Diagnostic Reagents. J. Infect. 2014, 69, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Shui, G.; Bendt, A.K.; Jappar, I.A.; Lim, H.M.; Laneelle, M.; Hervé, M.; Via, L.E.; Chua, G.H.; Bratschi, M.W.; Zainul Rahim, S.Z.; et al. Mycolic Acids as Diagnostic Markers for Tuberculosis Case Detection in Humans and Drug Efficacy in Mice. EMBO Mol. Med. 2012, 4, 27–37. [Google Scholar] [CrossRef]
- Rotherham, L.S.; Maserumule, C.; Dheda, K.; Theron, J.; Khati, M. Selection and Application of SsDNA Aptamers to Detect Active TB from Sputum Samples. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [Green Version]
- Mozioglu, E.; Gokmen, O.; Tamerler, C.; Kocagoz, Z.T.; Akgoz, M. Selection of Nucleic Acid Aptamers Specific for Mycobacterium Tuberculosis. Appl. Biochem. Biotechnol. 2016, 178, 849–864. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Zhang, X.; Zhou, J.; Liu, S.; Liu, J. Aptamer Inhibits Mycobacterium Tuberculosis (H37Rv) Invasion of Macrophage. Mol. Biol. Rep. 2012, 39, 2157–2162. [Google Scholar] [CrossRef] [PubMed]
- Sypabekova, M.; Jolly, P.; Estrela, P.; Kanayeva, D. Electrochemical Aptasensor Using Optimized Surface Chemistry for the Detection of Mycobacterium Tuberculosis Secreted Protein MPT64 in Human Serum. Biosens. Bioelectron. 2019, 123, 141–151. [Google Scholar] [CrossRef]
- Flores, L.L.; Steingart, K.R.; Dendukuri, N.; Schiller, I.; Minion, J.; Pai, M.; Ramsay, A.; Henry, M.; Laal, S. Systematic Review and Meta-Analysis of Antigen Detection Tests for the Diagnosis of Tuberculosis. Clin. Vaccine Immunol. CVI 2011, 18, 1616–1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marko-Varga, G.; Lindberg, H.; Löfdahl, C.-G.; Jönsson, P.; Hansson, L.; Dahlbäck, M.; Lindquist, E.; Johansson, L.; Foster, M.; Fehniger, T.E. Discovery of Biomarker Candidates within Disease by Protein Profiling: Principles and Concepts. J. Proteome Res. 2005, 4, 1200–1212. [Google Scholar] [CrossRef]
- Phillips, M.; Basa-Dalay, V.; Bothamley, G.; Cataneo, R.N.; Lam, P.K.; Natividad, M.P.R.; Schmitt, P.; Wai, J. Breath Biomarkers of Active Pulmonary Tuberculosis. Tuberculosis 2010, 90, 145–151. [Google Scholar] [CrossRef]
- Ray, S.; Reddy, P.J.; Jain, R.; Gollapalli, K.; Moiyadi, A.; Srivastava, S. Proteomic Technologies for the Identification of Disease Biomarkers in Serum: Advances and Challenges Ahead. Proteomics 2011, 11, 2139–2161. [Google Scholar] [CrossRef]
- Wallis, R.S.; Wang, C.; Doherty, T.M.; Onyebujoh, P.; Vahedi, M.; Laang, H.; Olesen, O.; Parida, S.; Zumla, A. Biomarkers for Tuberculosis Disease Activity, Cure, and Relapse. Lancet Infect. Dis. 2010, 10, 68–69. [Google Scholar] [CrossRef]
- Amiri-Dashatan, N.; Koushki, M.; Abbaszadeh, H.-A.; Rostami-Nejad, M.; Rezaei-Tavirani, M. Proteomics Applications in Health: Biomarker and Drug Discovery and Food Industry. Iran. J. Pharm. Res. IJPR 2018, 17, 1523–1536. [Google Scholar]
- Aslam, B.; Basit, M.; Nisar, M.A.; Khurshid, M.; Rasool, M.H. Proteomics: Technologies and Their Applications. J. Chromatogr. Sci. 2017, 55, 182–196. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.-J.; Woo, H.-M.; Kim, K.-S.; Oh, J.-W.; Jeong, Y.-J. Novel System for Detecting SARS Coronavirus Nucleocapsid Protein Using an SsDNA Aptamer. J. Biosci. Bioeng. 2011, 112, 535–540. [Google Scholar] [CrossRef] [PubMed]
- Poste, G. Bring on the Biomarkers. Nature 2011, 469, 156–157. [Google Scholar] [CrossRef]
- Peng, Z.; Chen, L.; Zhang, H. Serum Proteomic Analysis of Mycobacterium Tuberculosis Antigens for Discriminating Active Tuberculosis from Latent Infection. J. Int. Med. Res. 2020, 48, 0300060520910042. [Google Scholar] [CrossRef] [PubMed]
- Vinod, V.; Vijayrajratnam, S.; Vasudevan, A.K.; Biswas, R. The Cell Surface Adhesins of Mycobacterium Tuberculosis. Microbiol. Res. 2020, 232, 126392. [Google Scholar] [CrossRef] [PubMed]
- Govender, V.S.; Ramsugit, S.; Pillay, M. Mycobacterium Tuberculosis Adhesins: Potential Biomarkers as Anti-Tuberculosis Therapeutic and Diagnostic Targets. Microbiology 2014, 160, 1821–1831. [Google Scholar] [CrossRef] [Green Version]
- Pu, F.; Feng, J.; Niu, F.; Xia, P. Diagnostic Value of Recombinant Heparin-Binding Hemagglutinin Adhesin Protein in Spinal Tuberculosis. Open Med. 2020, 15, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, N.R.; Jacobsen, M.; Ottenhoff, T.H.M.; Ritz, N. A Systematic Review on Novel Mycobacterium Tuberculosis Antigens and Their Discriminatory Potential for the Diagnosis of Latent and Active Tuberculosis. Front. Immunol. 2018, 9. [Google Scholar] [CrossRef]
- Squeglia, F.; Ruggiero, A.; De Simone, A.; Berisio, R. A Structural Overview of Mycobacterial Adhesins: Key Biomarkers for Diagnostics and Therapeutics. Protein Sci. Publ. Protein Soc. 2018, 27, 369–380. [Google Scholar] [CrossRef] [Green Version]
- Delogu, G.; Vanini, V.; Cuzzi, G.; Chiacchio, T.; De Maio, F.; Battah, B.; Pinnetti, C.; Sampaolesi, A.; Antinori, A.; Goletti, D. Lack of Response to HBHA in HIV-Infected Patients with Latent Tuberculosis Infection. Scand. J. Immunol. 2016, 84, 344–352. [Google Scholar] [CrossRef]
- Song, L.; Wallstrom, G.; Yu, X.; Hopper, M.; Van Duine, J.; Steel, J.; Park, J.; Wiktor, P.; Kahn, P.; Brunner, A.; et al. Identification of Antibody Targets for Tuberculosis Serology Using High-Density Nucleic Acid Programmable Protein Arrays. Mol. Cell. Proteomics MCP 2017, 16, S277–S289. [Google Scholar] [CrossRef] [Green Version]
- Ireton, G.; Greenwald, R.; Liang, H.; Esfandiari, J.; Lyashchenko, K.; Reed, S. Identification of Mycobacterium Tuberculosis Antigens of High Serodiagnostic Value. Clin. Vaccine Immunol. CVI 2010, 17, 1539–1547. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenkrands, I.; Aagaard, C.; Weldingh, K.; Brock, I.; Dziegiel, M.H.; Singh, M.; Hoff, S.; Ravn, P.; Andersen, P. Identification of Rv0222 from RD4 as a Novel Serodiagnostic Target for Tuberculosis. Tuberculosis 2008, 88, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Siev, M.; Wilson, D.; Kainth, S.; Kasprowicz, V.O.; Feintuch, C.M.; Jenny-Avital, E.R.; Achkar, J.M. Antibodies against Mycobacterial Proteins as Biomarkers for HIV-Associated Smear-Negative Tuberculosis. Clin. Vaccine Immunol. 2014, 21, 791–798. [Google Scholar] [CrossRef] [Green Version]
- Burbelo, P.D.; Keller, J.; Wagner, J.; Klimavicz, J.S.; Bayat, A.; Rhodes, C.S.; Diarra, B.; Chetchotisakd, P.; Suputtamongkol, Y.; Kiertiburanakul, S.; et al. Serological Diagnosis of Pulmonary Mycobacterium Tuberculosis Infection by LIPS Using a Multiple Antigen Mixture. BMC Microbiol. 2015, 15, 205. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.H.; Ravindran, R.; Krishnan, V.V.; Awan, I.N.; Rizvi, S.K.; Saqib, M.A.; Shahzad, M.I.; Tahseen, S.; Ireton, G.; Goulding, C.W.; et al. Plasma Antibody Profiles as Diagnostic Biomarkers for Tuberculosis. Clin. Vaccine Immunol. CVI 2011, 18, 2148–2153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Souza, G.A.; Leversen, N.A.; Målen, H.; Wiker, H.G. Bacterial Proteins with Cleaved or Uncleaved Signal Peptides of the General Secretory Pathway. J. Proteomics 2011, 75, 502–510. [Google Scholar] [CrossRef] [Green Version]
- Mawuenyega, K.G.; Forst, C.V.; Dobos, K.M.; Belisle, J.T.; Chen, J.; Bradbury, E.M.; Bradbury, A.R.M.; Chen, X. Mycobacterium Tuberculosis Functional Network Analysis by Global Subcellular Protein Profiling. Mol. Biol. Cell 2005, 16, 396–404. [Google Scholar] [CrossRef] [Green Version]
- Rosenkrands, I.; Weldingh, K.; Jacobsen, S.; Hansen, C.V.; Florio, W.; Gianetri, I.; Andersen, P. Mapping and Identification of Mycobacterium Tuberculosis Proteins by Two-Dimensional Gel Electrophoresis, Microsequencing and Immunodetection. Electrophoresis 2000, 21, 935–948. [Google Scholar] [CrossRef]
- Gu, S.; Chen, J.; Dobos, K.M.; Bradbury, E.M.; Belisle, J.T.; Chen, X. Comprehensive Proteomic Profiling of the Membrane Constituents of a Mycobacterium Tuberculosis Strain. Mol. Cell. Proteomics MCP 2003, 2, 1284–1296. [Google Scholar] [CrossRef] [Green Version]
- Gopalan, A.; Bhagavat, R.; Chandra, N.; Subbarao, S.H.; Raja, A.; Bethunaickan, R. Biophysical and Biochemical Characterization of Rv3405c, a Tetracycline Repressor Protein from Mycobacterium Tuberculosis. Biochem. Biophys. Res. Commun. 2018, 496, 799–805. [Google Scholar] [CrossRef]
- Aramaki, H.; Yagi, N.; Suzuki, M. Residues Important for the Function of a Multihelical DNA Binding Domain in the New Transcription Factor Family of Cam and Tet Repressors. Protein Eng. 1995, 8, 1259–1266. [Google Scholar] [CrossRef]
- Rouch, D.A.; Cram, D.S.; DiBerardino, D.; Littlejohn, T.G.; Skurray, R.A. Efflux-Mediated Antiseptic Resistance Gene QacA from Staphylococcus Aureus: Common Ancestry with Tetracycline- and Sugar-Transport Proteins. Mol. Microbiol. 1990, 4, 2051–2062. [Google Scholar] [CrossRef]
- Engohang-Ndong, J.; Baillat, D.; Aumercier, M.; Bellefontaine, F.; Besra, G.S.; Locht, C.; Baulard, A.R. EthR, a Repressor of the TetR/CamR Family Implicated in Ethionamide Resistance in Mycobacteria, Octamerizes Cooperatively on Its Operator. Mol. Microbiol. 2004, 51, 175–188. [Google Scholar] [CrossRef]
- Yu, Z.; Reichheld, S.E.; Savchenko, A.; Parkinson, J.; Davidson, A.R. A Comprehensive Analysis of Structural and Sequence Conservation in the TetR Family Transcriptional Regulators. J. Mol. Biol. 2010, 400, 847–864. [Google Scholar] [CrossRef]
- Kunnath-Velayudhan, S.; Salamon, H.; Wang, H.-Y.; Davidow, A.L.; Molina, D.M.; Huynh, V.T.; Cirillo, D.M.; Michel, G.; Talbot, E.A.; Perkins, M.D.; et al. Dynamic Antibody Responses to the Mycobacterium Tuberculosis Proteome. Proc. Natl. Acad. Sci. USA 2010, 107, 14703–14708. [Google Scholar] [CrossRef] [Green Version]
- Maio, F.D.; Berisio, R.; Manganelli, R.; Delogu, G. PE_PGRS Proteins of Mycobacterium Tuberculosis: A Specialized Molecular Task Force at the Forefront of Host–Pathogen Interaction. Virulence 2020, 11, 898–915. [Google Scholar] [CrossRef]
- Gilbert, S.; Hood, L.; Seah, S.Y.K. Characterization of an Aldolase Involved in Cholesterol Side Chain Degradation in Mycobacterium Tuberculosis. J. Bacteriol. 2017, 200. [Google Scholar] [CrossRef] [Green Version]
- Rengarajan, J.; Bloom, B.R.; Rubin, E.J. Genome-Wide Requirements for Mycobacterium Tuberculosis Adaptation and Survival in Macrophages. Proc. Natl. Acad. Sci. USA 2005, 102, 8327–8332. [Google Scholar] [CrossRef] [Green Version]
- Sassetti, C.M.; Rubin, E.J. Genetic Requirements for Mycobacterial Survival during Infection. Proc. Natl. Acad. Sci. USA 2003, 100, 12989–12994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiliza, T.E.; Pillay, M.; Naidoo, K.; Pillay, B. Immunoscreening of the M. Tuberculosis F15/LAM4/KZN Secretome Library against TB Patients’ Sera Identifies Unique Active- and Latent-TB Specific Biomarkers. Tuberc. Edinb. Scotl. 2019, 115, 161–170. [Google Scholar] [CrossRef]
- Bashiri, G.; Johnston, J.M.; Evans, G.L.; Bulloch, E.M.M.; Goldstone, D.C.; Jirgis, E.N.M.; Kleinboelting, S.; Castell, A.; Ramsay, R.J.; Manos-Turvey, A.; et al. Structure and Inhibition of Subunit I of the Anthranilate Synthase Complex of Mycobacterium Tuberculosis and Expression of the Active Complex. Acta Crystallogr. D Biol. Crystallogr. 2015, 71, 2297–2308. [Google Scholar] [CrossRef]
- Tan, S.Y.; Acquah, C.; Sidhu, A.; Ongkudon, C.M.; Yon, L.S.; Danquah, M.K. SELEX Modifications and Bioanalytical Techniques for Aptamer–Target Binding Characterization. Crit. Rev. Anal. Chem. 2016, 46, 521–537. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Reddy, M.C.; Ioerger, T.R.; Rothchild, A.C.; Dartois, V.; Schuster, B.M.; Trauner, A.; Wallis, D.; Galaviz, S.; Huttenhower, C.; et al. Tryptophan Biosynthesis Protects Mycobacteria from CD4 T-Cell-Mediated Killing. Cell 2013, 155, 1296–1308. [Google Scholar] [CrossRef] [Green Version]
- Strych, U.; Penland, R.L.; Jimenez, M.; Krause, K.L.; Benedik, M.J. Characterization of the Alanine Racemases from Two Mycobacteria. FEMS Microbiol. Lett. 2001, 196, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Sassetti, C.M.; Boyd, D.H.; Rubin, E.J. Genes Required for Mycobacterial Growth Defined by High Density Mutagenesis. Mol. Microbiol. 2003, 48, 77–84. [Google Scholar] [CrossRef]
- De Smet, K.A.L.; Weston, A.; Brown, I.N.; Young, D.B.; Robertson, B.D. Three Pathways for Trehalose Biosynthesis in Mycobacteria. Microbiol. Read. Engl. 2000, 146 Pt 1, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Kalscheuer, R.; Koliwer-Brandl, H. Genetics of Mycobacterial Trehalose Metabolism. Microbiol. Spectr. 2014, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, H.N.; Stewart, G.R.; Mischenko, V.V.; Apt, A.S.; Harris, R.; McAlister, M.S.B.; Driscoll, P.C.; Young, D.B.; Robertson, B.D. The OtsAB Pathway Is Essential for Trehalose Biosynthesis in Mycobacterium Tuberculosis. J. Biol. Chem. 2005, 280, 14524–14529. [Google Scholar] [CrossRef] [Green Version]
- Brennan, P.J.; Vissa, V.D. Genomic Evidence for the Retention of the Essential Mycobacterial Cell Wall in the Otherwise Defective Mycobacterium Leprae. Lepr. Rev. 2001, 72, 415–428. [Google Scholar] [CrossRef]
- Khare, G.; Nangpal, P.; Tyagi, A.K. Differential Roles of Iron Storage Proteins in Maintaining the Iron Homeostasis in Mycobacterium Tuberculosis. PLoS ONE 2017, 12. [Google Scholar] [CrossRef] [Green Version]
- Reddy, P.V.; Puri, R.V.; Khera, A.; Tyagi, A.K. Iron Storage Proteins Are Essential for the Survival and Pathogenesis of Mycobacterium Tuberculosis in THP-1 Macrophages and the Guinea Pig Model of Infection. J. Bacteriol. 2012, 194, 567–575. [Google Scholar] [CrossRef] [Green Version]
- Bitter, W.; Houben, E.N.G.; Luirink, J.; Appelmelk, B.J. Type VII Secretion in Mycobacteria: Classification in Line with Cell Envelope Structure. Trends Microbiol. 2009, 17, 337–338. [Google Scholar] [CrossRef] [PubMed]
- Hunt, D.M.; Sweeney, N.P.; Mori, L.; Whalan, R.H.; Comas, I.; Norman, L.; Cortes, T.; Arnvig, K.B.; Davis, E.O.; Stapleton, M.R.; et al. Long-Range Transcriptional Control of an Operon Necessary for Virulence-Critical ESX-1 Secretion in Mycobacterium Tuberculosis. J. Bacteriol. 2012, 194, 2307–2320. [Google Scholar] [CrossRef] [Green Version]
- Raghavan, S.; Manzanillo, P.; Chan, K.; Dovey, C.; Cox, J.S. Secreted Transcription Factor Controls Mycobacterium Tuberculosis Virulence. Nature 2008, 454, 717–721. [Google Scholar] [CrossRef] [Green Version]
- Prabhavathi, M.; Pathakumari, B.; Raja, A. IFN-γ/TNF-α Ratio in Response to Immuno Proteomically Identified Human T-Cell Antigens of Mycobacterium Tuberculosis—The Most Suitable Surrogate Biomarker for Latent TB Infection. J. Infect. 2015, 71, 238–249. [Google Scholar] [CrossRef]
- Young, B.L.; Mlamla, Z.; Gqamana, P.P.; Smit, S.; Roberts, T.; Peter, J.; Theron, G.; Govender, U.; Dheda, K.; Blackburn, J. The Identification of Tuberculosis Biomarkers in Human Urine Samples. Eur. Respir. J. 2014, 43, 1719–1729. [Google Scholar] [CrossRef] [Green Version]
- Drain, P.K.; Losina, E.; Coleman, S.M.; Giddy, J.; Ross, D.; Katz, J.N.; Freedberg, K.A.; Bassett, I.V. Clinic-Based Urinary Lipoarabinomannan as a Biomarker of Clinical Disease Severity and Mortality Among Antiretroviral Therapy-Naive Human Immunodeficiency Virus-Infected Adults in South Africa. Open Forum Infect. Dis. 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Banu, S.; Honoré, N.; Saint-Joanis, B.; Philpott, D.; Prévost, M.-C.; Cole, S.T. Are the PE-PGRS Proteins of Mycobacterium Tuberculosis Variable Surface Antigens? Mol. Microbiol. 2002, 44, 9–19. [Google Scholar] [CrossRef]
- Delogu, G.; Brennan, M.J. Comparative Immune Response to PE and PE_PGRS Antigens of Mycobacterium Tuberculosis. Infect. Immun. 2001, 69, 5606–5611. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, L.; Federspiel, N.A.; Falkow, S. Granuloma-Specific Expression of Mycobacterium Virulence Proteins from the Glycine-Rich PE-PGRS Family. Science 2000, 288, 1436–1439. [Google Scholar] [CrossRef] [Green Version]
- Stokes, R.W.; Norris-Jones, R.; Brooks, D.E.; Beveridge, T.J.; Doxsee, D.; Thorson, L.M. The Glycan-Rich Outer Layer of the Cell Wall of Mycobacterium Tuberculosis Acts as an Antiphagocytic Capsule Limiting the Association of the Bacterium with Macrophages. Infect. Immun. 2004, 72, 5676–5686. [Google Scholar] [CrossRef] [Green Version]
- Cole, S.T.; Brosch, R.; Parkhill, J.; Garnier, T.; Churcher, C.; Harris, D.; Gordon, S.V.; Eiglmeier, K.; Gas, S.; Barry, C.E.; et al. Deciphering the Biology of Mycobacterium Tuberculosis from the Complete Genome Sequence. Nature 1998, 393, 537–544. [Google Scholar] [CrossRef]
- Kang, C.-M.; Abbott, D.W.; Park, S.T.; Dascher, C.C.; Cantley, L.C.; Husson, R.N. The Mycobacterium Tuberculosis Serine/Threonine Kinases PknA and PknB: Substrate Identification and Regulation of Cell Shape. Genes Dev. 2005, 19, 1692–1704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Narayan, A.; Sachdeva, P.; Sharma, K.; Saini, A.K.; Tyagi, A.K.; Singh, Y. Serine Threonine Protein Kinases of Mycobacterial Genus: Phylogeny to Function. Physiol. Genom. 2007, 29, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Iyer, L.; Makarova, K.; Koonin, E.; Aravind, L. Comparative Genomics of the FtsK-HerA Superfamily of Pumping ATPases: Implications for the Origins of Chromosome Segregation, Cell Division and Viral Capsid Packaging. Nucleic Acids Res. 2004, 32, 5260–5279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Massey, T.H.; Mercogliano, C.P.; Yates, J.; Sherratt, D.J.; Löwe, J. Double-Stranded DNA Translocation: Structure and Mechanism of Hexameric FtsK. Mol. Cell 2006, 23, 457–469. [Google Scholar] [CrossRef]
- Huang, Q.; Abdalla, A.E.; Xie, J. Phylogenomics of Mycobacterium Nitrate Reductase Operon. Curr. Microbiol. 2015, 71, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Weber, I.; Fritz, C.; Ruttkowski, S.; Kreft, A.; Bange, F.C. Anaerobic Nitrate Reductase (NarGHJI) Activity of Mycobacterium Bovis BCG in Vitro and Its Contribution to Virulence in Immunodeficient Mice. Mol. Microbiol. 2000, 35, 1017–1025. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.J.; Kana, B.D.; Mizrahi, V. Functional Analysis of Molybdopterin Biosynthesis in Mycobacteria Identifies a Fused Molybdopterin Synthase in Mycobacterium Tuberculosis. J. Bacteriol. 2011, 193, 98–106. [Google Scholar] [CrossRef] [Green Version]
- Iona, E.; Pardini, M.; Mustazzolu, A.; Piccaro, G.; Nisini, R.; Fattorini, L.; Giannoni, F. Mycobacterium Tuberculosis Gene Expression at Different Stages of Hypoxia-Induced Dormancy and upon Resuscitation. J. Microbiol. 2016, 54, 565–572. [Google Scholar] [CrossRef]
- Safi, H.; Barnes, P.F.; Lakey, D.L.; Shams, H.; Samten, B.; Vankayalapati, R.; Howard, S.T. IS6110 Functions as a Mobile, Monocyte-Activated Promoter in Mycobacterium Tuberculosis. Mol. Microbiol. 2004, 52, 999–1012. [Google Scholar] [CrossRef]
- Sampson, S.; Warren, R.; Richardson, M.; van der Spuy, G.; van Helden, P.; Dunlap, N.; Benjamin, W.H. IS6110 Insertions in Mycobacterium Tuberculosis: Predominantly into Coding Regions. J. Clin. Microbiol. 2001, 39, 3423–3424. [Google Scholar] [CrossRef] [Green Version]
- Fraaije, M.W.; van den Heuvel, R.H.H.; van Berkel, W.J.H.; Mattevi, A. Covalent Flavinylation Is Essential for Efficient Redox Catalysis in Vanillyl-Alcohol Oxidase. J. Biol. Chem. 1999, 274, 35514–35520. [Google Scholar] [CrossRef] [Green Version]
- Reed, D.W.; Hartzell, P.L. The Archaeoglobus Fulgidus D-Lactate Dehydrogenase Is a Zn2+ Flavoprotein. J. Bacteriol. 1999, 181, 7580–7587. [Google Scholar] [CrossRef] [Green Version]
- Del Portillo, P.; García-Morales, L.; Menéndez, M.C.; Anzola, J.M.; Rodríguez, J.G.; Helguera-Repetto, A.C.; Ares, M.A.; Prados-Rosales, R.; Gonzalez-y-Merchand, J.A.; García, M.J. Hypoxia Is Not a Main Stress When Mycobacterium Tuberculosis Is in a Dormancy-Like Long-Chain Fatty Acid Environment. Front. Cell. Infect. Microbiol. 2019, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, M.; Khan, F.G.; Sharma, S.; Kumar, R.; Faujdar, J.; Sharma, R.; Chauhan, D.S.; Singh, R.; Magotra, S.K.; Khan, I.A. Identification of Mycobacterium Tuberculosis Genes Preferentially Expressed during Human Infection. Microb. Pathog. 2011, 50, 31–38. [Google Scholar] [CrossRef] [PubMed]
- Jackson, M.; Stadthagen, G.; Gicquel, B. Long-Chain Multiple Methyl-Branched Fatty Acid-Containing Lipids of Mycobacterium Tuberculosis: Biosynthesis, Transport, Regulation and Biological Activities. Tuberculosis 2007, 87, 78–86. [Google Scholar] [CrossRef]
- Lawn, S.D. Point-of-Care Detection of Lipoarabinomannan (LAM) in Urine for Diagnosis of HIV-Associated Tuberculosis: A State of the Art Review. BMC Infect. Dis. 2012, 12, 103. [Google Scholar] [CrossRef] [Green Version]
- Drain, P.K.; Gounder, L.; Sahid, F.; Moosa, M.-Y.S. Rapid Urine LAM Testing Improves Diagnosis of Expectorated Smear-Negative Pulmonary Tuberculosis in an HIV-Endemic Region. Sci. Rep. 2016, 6, 19992. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Dorman, S.; Shah, M.; Manabe, Y.C.; Moodley, V.M.; Nicol, M.P.; Dowdy, D.W. Cost Utility of Lateral-Flow Urine Lipoarabinomannan for Tuberculosis Diagnosis in HIV-Infected African Adults. Int. J. Tuberc. Lung Dis. Off. J. Int. Union Tuberc. Lung Dis. 2013, 17, 552–558. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drain, P.K.; Gounder, L.; Grobler, A.; Sahid, F.; Bassett, I.V.; Moosa, M.-Y.S. Urine Lipoarabinomannan to Monitor Antituberculosis Therapy Response and Predict Mortality in an HIV-Endemic Region: A Prospective Cohort Study. BMJ Open 2015, 5, e006833. [Google Scholar] [CrossRef] [Green Version]
- Amos-Brown, B. Isolation and Characterisation of Novel DNA Aptamers against Mycobacterium Tuberculosis Biomarkers: New Tools for Tuberculosis Diagnostics. Ph.D. Thesis, University of Cape Town, Cape Town, South Africa, 2018. [Google Scholar]
- Pan, S.-J.; Tapley, A.; Adamson, J.; Little, T.; Urbanowski, M.; Cohen, K.; Pym, A.; Almeida, D.; Dorasamy, A.; Layre, E.; et al. Biomarkers for Tuberculosis Based on Secreted, Species-Specific, Bacterial Small Molecules. J. Infect. Dis. 2015, 212, 1827–1834. [Google Scholar] [CrossRef] [Green Version]
- Hanafiah, K.M.; Arifin, N.; Sanders, P.R.; Othman, N.; Garcia, M.L.; Anderson, D.A. Proteomic Analysis of Antigen 60 Complex of M. Bovis Bacillus Calmette-Guérin Reveals Presence of Extracellular Vesicle Proteins and Predicted Functional Interactions. Vaccines 2019, 7, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Young, D.C.; Layre, E.; Pan, S.-J.; Tapley, A.; Adamson, J.; Seshadri, C.; Wu, Z.; Buter, J.; Minnaard, A.J.; Coscolla, M.; et al. In Vivo Biosynthesis of Terpene Nucleosides Provides Unique Chemical Markers of Mycobacterium Tuberculosis Infection. Chem. Biol. 2015, 22, 516–526. [Google Scholar] [CrossRef] [Green Version]
- Santhanagopalan, S.M.; Rodriguez, G.M. Examining the Role of Rv2895c (ViuB) in Iron Acquisition in Mycobacterium Tuberculosis—Abstract—Europe PMC. Available online: https://europepmc.org/article/med/22015175 (accessed on 14 November 2020).
- Snow, G.A. Mycobactins: Iron-Chelating Growth Factors from Mycobacteria. Bacteriol. Rev. 1970, 34, 99–125. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, E.D. Iron Loading and Disease Surveillance. Emerg. Infect. Dis. 1999, 5, 346–352. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez, G.M.; Smith, I. Identification of an ABC Transporter Required for Iron Acquisition and Virulence in Mycobacterium Tuberculosis. J. Bacteriol. 2006, 188, 424–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeowell, H.N.; White, J.R. Iron Requirement in the Bactericidal Mechanism of Streptonigrin. Antimicrob. Agents Chemother. 1982, 22, 961–968. [Google Scholar] [CrossRef] [Green Version]
- Fang, Z.; Sampson, S.L.; Warren, R.M.; Gey van Pittius, N.C.; Newton-Foot, M. Iron Acquisition Strategies in Mycobacteria. Tuberc. Edinb. Scotl. 2015, 95, 123–130. [Google Scholar] [CrossRef]
Feature | QFT-GIT | T-SPOT |
---|---|---|
Test sample | Whole blood | Peripheral blood mononuclear cells (PBMCs) |
M. tb antigens tested | Single peptides such as the early secretory antigenic target 6 (ESAT-6) Culture filtrate protein 10 (CFP-10) | Can detect one or both peptides (ESAT-6 and CFP-10) |
Measurement | IFN-ƴ concentration. | Number of IFN-ƴ producing cells |
Possible Results | Positive, negative, indeterminate | Positive, negative indeterminate, borderline |
Processing time | Takes about 24 h | Processes within 8 h |
Diagnostic Test | Test Sample | Targets | Specificity | Sensitivity | Cost (USD Per Test) | Turn-Around Time | References |
---|---|---|---|---|---|---|---|
Sputum smear microscopy | Sputum | Bacilli | 99.1% | 50–60% | 13.31–99,350 | 1 h | [59,60,61,97] |
Sputum culture | Sputum | M. tb | 98% | >80% | 15–143,432 | 4 weeks | [59,60,61,97] |
Chest X-ray and Ultrasonography | Lungs | Lesions in the lungs | >68.6% | >76.4% | 7.8—672,298 | <30 min | [65,66,68,69] |
TST | Skin | Tuberculin | 88% | 94% | 3–13 | 48–72 h | [70,98] |
IGRA | Blood | IFN-ƴ | 76.37% | 76.66% | 46.61—55.08 | 8–24 h | [72,73,74,99] |
GeneXpert | Sputum | M. tb DNA | 100% | 98.6% | 252,876 | 2 h | [75,77,78,97] |
Line probe assay | Sputum | M. tb | 99.3% | 96.9% | 107,212 | 7 h | [97,100] |
Serological tests | Blood | M. tb antibodies and nucleic acids | 84–100% | 43–71% | 10–30 | <30 min | [93,94,95] |
Properties | Antibody | Aptamer |
---|---|---|
Production | Time-consuming (weeks-months) | Chemical synthesis (1–2 days, such as capillary electrophoresis-based SELEX) |
Selection | Limited to animal immunisation | In vitro and in vivo selection under a variety of conditions |
Oriented immobilization | Difficult through protein A/G | Easy through various chemical modifications |
Target | Proteins or haptens. Difficult for non-immunogenic or toxic targets | Any targets from ions to whole cells, including non-immunogenic or toxic target |
Modification | Difficult and expensive to modify | Cheap and easy to modify with other active groups in a large scale |
Shelf life | Short shelf life and require a continuous cold storage | Long shelf life and does not require special storage conditions |
Stability | Sensitive to pH and temperature | Tolerant of pH and temperature |
Cost | 1 mg of a modified antibody costs USD ~1000 | 1 mg of a modified aptamer costs USD ~100 |
Biomarkers | Locus/Accession No. | HIV Status | References |
---|---|---|---|
Single-strand binding (Ssb) protein or helix-destabilizing protein | a,bRv0054 | + | [150] |
Chorismate mutase | aRv0948c | + | [150] |
Heat shock protein HspX | aRv2031c | - | [150] |
Conserved protein | a,bRv0831c | 0 | [150] |
Possible transcriptional regulatory protein | bRv3405c | + | [150] |
PE-PGRS family protein PE_PGRS48 | aRv2853 | - | [150] |
Acyl-coenzyme A dehydrogenase (ACAD) | bRv3544c | 0 | [150] |
Enoyl-CoA hydratase, EchA1 | bRv0222 | 0 | [150] |
HBHA | cMT18B_0591 | - | [148,149] |
ESAT-6 | cRv3875 | + | [148,149] |
Protein Name | Accession # | M. tb Specific | Reference |
---|---|---|---|
Aconitate hydratase | Rv1475c | X | [186] |
Conserved protein | Rv1977+ | X | [186] |
Serine/threonine protein kinase | Rv0014c | ✓ | [186] |
DNA translocase FtsK | Rv2748c | ✓ | [186] |
Nitrate reductase α-subunit | Rv1161 | ✓ | [186] |
Uncharacterised FAD-linked oxidoreductase | Rv2280 | ✓ | [186] |
Conserved hypothetical protein | Rv2694c | ✓ | [186] |
Polyketide synthase | Rv1664 | ✓ | [186] |
PE-PGRS protein of 1661 amino acids | Rv2490c | ✓ | [186] |
PE-PGRS protein of 1307 amino acids | Rv0578c | ✓ | [186] |
Lipoarabinomannan (LAM) | Rv2188c Rv2181 | X | [187] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, D.R.; Sibuyi, N.R.; Dube, P.; Fadaka, A.O.; Cloete, R.; Onani, M.; Madiehe, A.M.; Meyer, M. Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics 2021, 11, 1352. https://doi.org/10.3390/diagnostics11081352
Martin DR, Sibuyi NR, Dube P, Fadaka AO, Cloete R, Onani M, Madiehe AM, Meyer M. Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics. 2021; 11(8):1352. https://doi.org/10.3390/diagnostics11081352
Chicago/Turabian StyleMartin, Darius Riziki, Nicole Remaliah Sibuyi, Phumuzile Dube, Adewale Oluwaseun Fadaka, Ruben Cloete, Martin Onani, Abram Madimabe Madiehe, and Mervin Meyer. 2021. "Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care" Diagnostics 11, no. 8: 1352. https://doi.org/10.3390/diagnostics11081352
APA StyleMartin, D. R., Sibuyi, N. R., Dube, P., Fadaka, A. O., Cloete, R., Onani, M., Madiehe, A. M., & Meyer, M. (2021). Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics, 11(8), 1352. https://doi.org/10.3390/diagnostics11081352